skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chu, Tingjin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environ- mental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the proper- ties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymp- totic framework has a fixed spatio-temporal domain for spatio-temporal pro- cesses that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illus- trated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset. 
    more » « less