- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Chu, Zhendong (4)
-
Wang, Hongning (4)
-
Cai, Renqin (1)
-
Ji, Yangfeng (1)
-
Long, Bo (1)
-
Sun, Tong (1)
-
Wang, Zichao (1)
-
Wu, Lingfei (1)
-
Xiao, Yun (1)
-
Zhang, Ruiyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 18, 2025
-
Chu, Zhendong; Wang, Hongning (, 38th AAAI Conference on Artificial Intelligence(AAAI'2024))
-
Chu, Zhendong; Wang, Hongning; Xiao, Yun; Long, Bo; Wu, Lingfei (, Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining)
-
Chu, Zhendong; Cai, Renqin; Wang, Hongning (, Proceedings of the 28th ACM International Conference on Information and Knowledge Management)Textual information, such as news articles, social media, and online forum discussions, often comes in a form of sequential text streams. Events happening in the real world trigger a set of articles talking about them or related events over a period of time. In the meanwhile, even one event is fading out, another related event could raise public attention. Hence, it is important to leverage the information about how topics influence each other over time to obtain a better understanding and modeling of document streams. In this paper, we explicitly model mutual influence among topics over time, with the purpose to better understand how events emerge, fade and inherit. We propose a temporal point process model, referred to as Correlated Temporal Topic Model (CoTT), to capture the temporal dynamics in a latent topic space. Our model allows for efficient online inference, scaling to continuous time document streams. Extensive experiments on real-world data reveal the effectiveness of our model in recovering meaningful temporal dependency structure among topics and documents.more » « less