Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Localizing video moments based on the movement patterns of objects is an important task in video analytics. Existing video analytics systems offer two types of querying interfaces based on natural language and SQL, respectively. However, both types of interfaces have major limitations. SQL-based systems require high query specification time, whereas natural language-based systems require large training datasets to achieve satisfactory retrieval accuracy. To address these limitations, we present SketchQL, a video database management system (VDBMS) for offline, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video moment datasets. To improve ease-of-use, SketchQL features avisual query interfacethat enables users to sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained models. We present a learned similarity search algorithm for retrieving video moments closely matching the user's visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval accuracy over state-of-the-art VDBMSs.more » « lessFree, publicly-accessible full text available October 1, 2025
-
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.more » « lessFree, publicly-accessible full text available August 1, 2025
-
State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.more » « less
-
In recent years, deep learning models have revolutionized computer vision, enabling diverse applications. However, these models are computationally expensive, and leveraging them for video analyt- ics involves low-level imperative programming. To address these efficiency and usability challenges, the database community has de- veloped video database management systems (VDBMSs). However, existing VDBMSs lack extensibility and composability and do not support holistic system optimizations, limiting their practical appli- cation. In response to these issues, we present our vision for EVA, a VDBMS that allows for extensible support of user-defined functions and employs a Cascades-style query optimizer. Additionally, we leverage RAY’s distributed execution to enhance scalability and performance and explore hardware-specific optimizations to facilitate runtime optimizations. We discuss the architecture and design of EVA, our achievements thus far, and our research roadmap.more » « less