Feedbacks between plants and soil microbes form a keystone to terrestrial community and ecosystem dynamics. Recent advances in dissecting the spatial and temporal dynamics of plant–soil feedbacks (PSFs) have challenged longstanding assumptions of spatially well‐mixed microbial communities and exceedingly fast microbial assembly dynamics relative to plant lifespans. Instead, PSFs emerge from interactions that are inherently mismatched in spatial and temporal scales, and explicitly considering these spatial and temporal dynamics is crucial to understanding the contribution of PSFs to foundational ecological patterns. I propose a synthetic spatiotemporal framework for future research that pairs experimental and modeling approaches grounded in mechanism to improve predictability and generalizability of PSFs.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary -
1. Climate change is projected to cause shifts in precipitation regimes globally, leading to intensified periods of precipitation and droughts. Most studies that have explored the influence of changing precipitation regimes on ecosystems have focused on changes in mean annual precipitation, rather than the variance around the mean. Soil fungi are ubiquitous organisms that drive ecosystem processes, but it is unknown how they respond to long-term increased interannual precipitation variability. 2. Here, we investigated the influence of long-term increased precipitation variability and host type on soil fungal diversity and community composition in a dryland ecosystem. We collected 300 soil samples from two time points and different host type substrate types at a long-term precipitation variability experiment at the Jornada Long Term Ecological Research site. Next, we used amplicon sequencing to characterize soil fungal communities. 3. Soil fungal alpha diversity and community composition were strongly affected by host type and sampling year, and increased precipitation variability caused a modest, statistically insignificant, decrease in soil fungal evenness. Furthermore, results from our structural equational model showed that the decrease in grass-associated soil fungal richness was likely an indirect result of host decline in response to increased precipitation variability. 4. Synthesis. Our work demonstrates effects of increase in interannual precipitation variability on soil fungi, and that plant hosts play a key role in mediating soil fungal responses.more » « less
-
Abstract Interactions between plants and soil microbes can influence plant population dynamics and diversity in plant communities. Traditional theoretical paradigms view the microbial community as a black box with net effects described by phenomenological models.
This approach struggles to quantify the importance of plant–microbe interactions relative to other competition and coexistence mechanisms and to explain context dependence in microbe effects.
We argue that a mechanistic framework focused on microbial functional groups will lead to conceptual and empirical advances, as demonstrated by extending resource ratio theory to plant–microbe interactions. We review the diverse pathways by which different microbial functional groups can influence plant resource competition. Finally, we suggest approaches to link theory with observations to measure the key parameters of our framework.
Synthesis : Our review highlights recent experimental advancements for uncovering microbial mechanisms that alter plant host resource competition and coexistence. We synthesize these mechanisms into a conceptual model that provides a framework for future experiments to investigate the importance of plant–microbe interactions in structuring plant populations and communities. -
Abstract Recent studies have shown the potential for negative plant–soil feedbacks (PSFs) to promote stable coexistence, but have not quantified the stabilizing effect relative to other coexistence mechanisms. We conducted a field experiment to test the role of PSFs in stabilizing coexistence among four dominant sagebrush steppe species that appear to coexist stably, based on previous work with observational data and models. We then integrated the effects of PSF treatments on focal species across germination, survival, and first‐year growth. To contribute to stable coexistence, soil microbes should have host‐specific effects that result in negative feedbacks. Over two replicated growing seasons, our experiments consistently showed that soil microbes have negative effects on plant growth, but these effects were rarely host‐specific. The uncommon host‐specific effects were mostly positive at the germination stage, and negative for growth. Integrated effects of PSF across early life‐stage vital rates showed that PSF‐mediated self‐limitation occasionally had large effects on projected plant biomass, but occurred inconsistently between years. Our results suggest that while microbially‐mediated PSF may not be a common mechanism of coexistence in this community, it may still affect the relative abundance of dominant plant species via changes in host fitness. Our work also serves as a blueprint for future investigations that aim to identify underlying processes and test alternative mechanisms to explain important patterns in community ecology.
-
Aim: Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of host plants. Documenting the biogeography of microbiomes can detect the potential for a changing environment to disrupt host-microbe interactions, particularly in cases where microbes, such as root-associated Ascomycota, buffer hosts against abiotic stressors. We evaluated whether root-associated fungi had poleward declines in diversity as occur for many animals and plants, tested whether microbial communities shifted near host plant range edges, and determined the relative importance of latitude, climate, edaphic factors, and host plant traits as predictors of fungal community structure. Location: North American plains grasslands Taxon: Foundation North American grass species ⎯ Andropogon gerardii, Bouteloua eriopoda, B. gracilis, B. dactyloides, and Schizachyrium scoparium and their root-associated fungi Methods: At each of 24 sites representing three replicate latitudinal gradients spanning 17° latitude, we collected roots from 12 individual plants per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next-generation sequencing of the fungal ITS2 region, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. Results: Root-associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of these environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged among individual plants of each grass species. Main conclusions: Environmental predictors of root-associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non-mycorrhizal, root-associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate.more » « less
-
null (Ed.)Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.more » « less
-
Investigations of plant-soil feedbacks (PSF) and plant-microbe interactions often rely exclusively on greenhouse experiments, yet we have little understanding of how, and when, results can be extrapolated to explain phenomena in nature. A systematic comparison of microbial communities using the same host species across study environments can inform the generalizability of such experiments. We used Illumina MiSeq sequencing to characterize the root-associated fungi of two foundation grasses from a greenhouse PSF experiment, a field PSF experiment, field monoculture stands, and naturally occurring resident plants in the field. A core community consisting < 10% of total fungal OTU richness but > 50% of total sequence abundance occurred in plants from all study types, demonstrating the ability of field and greenhouse experiments to capture the dominant component of natural communities. Fungal communities were plant species-specific across the study types, with the core community showing stronger host specificity than peripheral taxa. Roots from the greenhouse and field PSF experiments had lower among sample variability in community composition and higher diversity than those from naturally occurring, or planted monoculture plants from the field. Core and total fungal composition differed substantially across study types, and dissimilarity between fungal communities did not predict plant-soil feedbacks measured in experiments. These results suggest that rhizobiome assembly mechanisms in nature differ from the dynamics of short-term, inoculation studies. Our results validate the efficacy of common PSF experiment designs to test soil inoculum effects, and highlight the challenges of scaling the underlying microbial mechanisms of plant responses from whole-community inoculation experiments to natural ecosystems.more » « less