skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Churazov, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Context. Outflows and feedback are key ingredients of galaxy evolution. Evidence for an outflow arising from the Galactic center (GC) – the so-called GC chimneys – has recently been discovered at radio, infrared, and X-ray bands. Aims. We undertake a detailed examination of the spatial relationships between the emission in the different bands in order to place constraints on the nature and history of the chimneys and to better understand their impact on the GC environment and their relation with Galactic scale outflows. Methods. We compare X-ray, radio, and infrared maps of the central few square degrees. Results. The X-ray, radio, and infrared emissions are deeply interconnected, affecting one another and forming coherent features on scales of hundreds of parsecs, therefore indicating a common physical link associated with the GC outflow. We debate the location of the northern chimney and suggest that it might be located on the front side of the GC because of a significant tilt of the chimneys toward us. We report the presence of strong shocks at the interface between the chimneys and the interstellar medium, which are traced by radio and warm dust emission. We observe entrained molecular gas outflowing within the chimneys, revealing the multiphase nature of the outflow. In particular, the molecular outflow produces a long, strong, and structured shock along the northwestern wall of the chimney. Because of the different dynamical times of the various components of the outflow, the chimneys appear to be shaped by directed large-scale winds launched at different epochs. The data support the idea that the chimneys are embedded in an (often dominant) vertical magnetic field, which likely diverges with increasing latitude. We observe that the thermal pressure associated with the hot plasma appears to be smaller than the ram pressure of the molecular outflow and the magnetic pressure. This leaves open the possibility that either the main driver of the outflow is more powerful than the observed hot plasma, or the chimneys represent a “relic” of past and more powerful activity. Conclusions. These multiwavelength observations corroborate the idea that the chimneys represent the channel connecting the quasi-continuous, but intermittent, activity at the GC with the base of the Fermi bubbles. In particular, the prominent edges and shocks observed in the radio and mid-infrared bands testify to the most powerful, more recent outflows from the central parsecs of the Milky Way. 
    more » « less
  2. A heat flux in a high- $$\unicode[STIX]{x1D6FD}$$ plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as $$1/\unicode[STIX]{x1D6FD}$$ . We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of $$\unicode[STIX]{x1D6FD}$$ and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high- $$\unicode[STIX]{x1D6FD}$$ astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and $$\unicode[STIX]{x1D6FD}$$ . For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients. 
    more » « less