skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Churchhouse, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT BackgroundThe degree of gene and sequence preservation across species provides valuable insights into the relative necessity of genes from the perspective of natural selection. Here, we developed novel interspecies metrics across 462 mammalian species, GISMO (Gene identity score of mammalian orthologs) and GISMO-mis (GISMO-missense), to quantify gene loss traversing millions of years of evolution. GISMO is a measure of gene loss across mammals weighed by evolutionary distance relative to humans, whereas GISMO-mis quantifies the ratio of missense to synonymous variants across mammalian species for a given gene. RationaleDespite large sample sizes, current human constraint metrics are still not well calibrated for short genes. Traversing over 100 million years of evolution across hundreds of mammals can identify the most essential genes and improve gene-disease association. Beyond human genetics, these metrics provide measures of gene constraint to further enable mammalian genetics research. ResultsOur analyses showed that both metrics are strongly correlated with measures of human gene constraint for loss-of-function, missense, and copy number dosage derived from upwards of a million human samples, which highlight the power of interspecies constraint. Importantly, neither GISMO nor GISMO-mis are strongly correlated with coding sequence length. Therefore both metrics can identify novel constrained genes that were too small for existing human constraint metrics to capture. We also found that GISMO scores capture rare variant association signals across a range of phenotypes associated with decreased fecundity, such as schizophrenia, autism, and neurodevelopmental disorders. Moreover, common variant heritability of disease traits are highly enriched in the most constrained deciles of both metrics, further underscoring the biological relevance of these metrics in identifying functionally important genes. We further showed that both scores have the lowest duplication and deletion rate in the most constrained deciles for copy number variants in the UK Biobank, suggesting that it may be an important metric for dosage sensitivity. We additionally demonstrate that GISMO can improve prioritization of recessive disorder genes and captures homozygous selection. ConclusionsOverall, we demonstrate that the most constrained genes for gene loss and missense variation capture the largest fraction of heritability, GISMO can help prioritize recessive disorder genes, and identify the most conserved genes across the mammalian tree. 
    more » « less
  2. Abstract The use of external controls in genome-wide association study (GWAS) can significantly increase the size and diversity of the control sample, enabling high-resolution ancestry matching and enhancing the power to detect association signals. However, the aggregation of controls from multiple sources is challenging due to batch effects, difficulty in identifying genotyping errors and the use of different genotyping platforms. These obstacles have impeded the use of external controls in GWAS and can lead to spurious results if not carefully addressed. We propose a unified data harmonization pipeline that includes an iterative approach to quality control and imputation, implemented before and after merging cohorts and arrays. We apply this harmonization pipeline to aggregate 27 517 European control samples from 16 collections within dbGaP. We leverage these harmonized controls to conduct a GWAS of Crohn’s disease. We demonstrate a boost in power over using the cohort samples alone, and that our procedure results in summary statistics free of any significant batch effects. This harmonization pipeline for aggregating genotype data from multiple sources can also serve other applications where individual level genotypes, rather than summary statistics, are required. 
    more » « less