skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Churchill, H_O_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Observation of intrinsic quantum transport properties of two-dimensional (2D) topological semimetals can be challenging due to suppression of high mobility caused by extrinsic factors introduced during fabrication. We demonstrate current annealing as a method to substantially improve electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2×106 and 2×104, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe was improved by a factor of 3800, resulting in observation of record-high mobility for exfoliated ZrSiSe. Quantum oscillations in annealed ZrSiSe appeared at magnetic fields as low as 5 T, and magnetoresistance increased by a factor of 104. We argue that a thermal process underlies this improvement. Finally, Raman spectroscopy and analysis of quantum oscillations in ZrSiSe indicate that the phonon modes and Fermi surface area are unchanged by current annealing. 
    more » « less