Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
Abstract The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 34 cm -2 s -1 . This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb -1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment.more » « lessFree, publicly-accessible full text available April 1, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
Abstract The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb -1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider.more » « lessFree, publicly-accessible full text available September 1, 2024
-
Free, publicly-accessible full text available August 1, 2024