skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clarens, Andres F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available September 3, 2025
  3. Calcium silicates are abundant, but sparingly soluble, feedstocks of interest for making low-carbon alternative cements. Under hydrothermal and alkaline conditions, they can form crystalline calcium silicate hydrate (CCSH) products, which are abundant in Roman concrete, or they can form carbonates when CO2 is present. To understand when co-precipitation of CCSH and carbonate phases is possible, we studied the hydrothermal carbonation of a model calcium silicate, pseudowollastonite (-CaSiO3), at 150ºC and high pH as a function of CO2 source (CO2(g) or Na2CO3) and different concentrations of sodium, alumina, and silica. Our experiments produced a range of CCSH phases including tobermorite – 13Å, rhodesite, and pectolite, as early as one day after the start of our experiments. About 10.7% hydrated product was observed after 7 days of curing in 2 M NaOH solution. We also observed the formation of CaCO3 as both aragonite and calcite when carbon was introduced to our experimental system. The carbon source impacted the ratio of CaCO3 to CCSH phases in the reaction products. Availability of Na2CO3 produced a balance between CaCO3 and CCSH phases whereas CO2(g) produced more CaCO3 at about 36.4% by mass at the highest. Higher concentrations of Na+ increased precipitation of both CaCO3 and/or CCSH phases. The presence of excess silica, in the form of dissolved borosilicate glass from our reaction vessels under alkaline reaction conditions, also enhanced the formation of CCSH phases formed in some experiments. Supplemental Al2O3, a common constituent in many silicate feedstocks, also enhanced CCSH formation, likely by forming aluminum substituted phases under the conditions tested here. These chemical insights can be enabling in designing formulation and curing guidelines for novel cementitious materials. 
    more » « less
  4. null (Ed.)