skip to main content


Search for: All records

Creators/Authors contains: "Clark, Bryan K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    The rise of automation and machine learning (ML) in electron microscopy has the potential to revolutionize materials research through autonomous data collection and processing. A significant challenge lies in developing ML models that rapidly generalize to large data sets under varying experimental conditions. We address this by employing a cycle generative adversarial network (CycleGAN) with a reciprocal space discriminator, which augments simulated data with realistic spatial frequency information. This allows the CycleGAN to generate images nearly indistinguishable from real data and provide labels for ML applications. We showcase our approach by training a fully convolutional network (FCN) to identify single atom defects in a 4.5 million atom data set, collected using automated acquisition in an aberration-corrected scanning transmission electron microscope (STEM). Our method produces adaptable FCNs that can adjust to dynamically changing experimental variables with minimal intervention, marking a crucial step towards fully autonomous harnessing of microscopy big data.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)