skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clark, C. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have searched for radio pulsations toward 49 Fermi Large Area Telescope (LAT) 1FGL Catalogγ-ray sources using the Green Bank Telescope at 350 MHz. We detected 18 millisecond pulsars (MSPs) in blind searches of the data; 10 of these were discoveries unique to our survey. 16 are binaries, with eight having short orbital periodsPB< 1 day. No radio pulsations from young pulsars were detected, although three targets are coincident with apparently radio-quietγ-ray pulsars discovered in LAT data. Here, we give an overview of the survey and present radio andγ-ray timing results for the 10 MSPs discovered. These include the only isolated MSP discovered in our survey and six short-PBbinary MSPs. Of these, three have very-low-mass companions (Mc≪ 0.1M) and hence belong to the class of black widow pulsars. Two have more massive, nondegenerate companions with extensive radio eclipses and orbitally modulated X-ray emission consistent with the redback class. Significantγ-ray pulsations have been detected from nine of the discoveries. This survey and similar efforts suggest that the majority of Galacticγ-ray sources at high Galactic latitudes are either MSPs or relatively nearby nonrecycled pulsars, with the latter having on average a much smaller radio/γ-ray beaming ratio as compared to MSPs. It also confirms that past surveys suffered from an observational bias against finding short-PBMSP systems. 
    more » « less
  2. We report the discovery of ten new pulsars in the globular cluster Terzan 5 as part of the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed Terzan 5 atL-band (856–1712 MHz) with the MeerKAT radio telescope for four hours on two epochs, and performed acceleration searches of 45 out of 288 tied-array beams covering the core of the cluster. We obtained phase-connected timing solutions for all ten discoveries, covering nearly two decades of archival observations from the Green Bank Telescope for all but one. Highlights include PSR J1748−2446ao which is an eccentric (e = 0.32) wide-orbit (orbital periodPb = 57.55 d) system. We were able to measure the rate of advance of periastron (ω̇) for this system allowing us to determine a total mass of 3.17 ± 0.02 M. With a minimum companion mass (Mc) of ∼0.8 M, PSR J1748−2446ao is a candidate double neutron star (DNS) system. If confirmed to be a DNS, it would be the fastest spinning pulsar (P = 2.27 ms) and the longest orbital period measured for any known DNS system. PSR J1748−2446ap has the second highest eccentricity for any recycled pulsar (e ∼ 0.905) and for this system we can measure the total mass (1.997 ± 0.006 M) and estimate the pulsar and companion masses, (1.700−0.045+0.015 Mand 0.294−0.014+0.046 M, respectively). PSR J1748−2446ar is an eclipsing redback (minimumMc ∼ 0.34 M) system whose properties confirm it to be the counterpart to a previously published source identified in radio and X-ray imaging. We were also able to detectω̇for PSR J1748−2446au leading to a total mass estimate of 1.82 ± 0.07 Mand indicating that the system is likely the result of Case A Roche lobe overflow. With these discoveries, the total number of confirmed pulsars in Terzan 5 is 49, the highest for any globular cluster so far. These discoveries further enhance the rich set of pulsars known in Terzan 5 and provide scope for a deeper understanding of binary stellar evolution, cluster dynamics and ensemble population studies. 
    more » « less
  3. ABSTRACT Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or $$0.43^{+0.04}_{-0.03}$$M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar. 
    more » « less
  4. null (Ed.)
  5. Abstract Reliable neutron star mass measurements are key to determining the equation of state of cold nuclear matter, but such measurements are rare. Black widows and redbacks are compact binaries consisting of millisecond pulsars and semi-degenerate companion stars. Spectroscopy of the optically bright companions can determine their radial velocities, providing inclination-dependent pulsar mass estimates. Although inclinations can be inferred from subtle features in optical light curves, such estimates may be systematically biased due to incomplete heating models and poorly understood variability. Using data from the Fermi Large Area Telescope, we have searched for gamma-ray eclipses from 49 spider systems, discovering significant eclipses in 7 systems, including the prototypical black widow PSR B1957+20. Gamma-ray eclipses require direct occultation of the pulsar by the companion, and so the detection, or significant exclusion, of a gamma-ray eclipse strictly limits the binary inclination angle, providing new robust, model-independent pulsar mass constraints. For PSR B1957+20, the eclipse implies a much lighter pulsar (1.81 ± 0.07 solar masses) than inferred from optical light curve modelling. 
    more » « less
  6. null (Ed.)
    ABSTRACT The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6–5618 contains a periodic optical and X-ray source that was predicted to be a ‘redback’ millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home-distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039–5617. Optical light-curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination i ≳ 60°, for a low pulsar mass between $$1.1\, \mathrm{M}_{\odot } \lt M_{\rm psr} \lt $$ 1.6 M⊙, and a companion mass of 0.15–$$0.22\, \mathrm{M}_{\odot }$$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find that the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion star’s optical photon field. 
    more » « less
  7. Abstract We present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems colocated with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≤11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with six undetected in radio. Overall, ≥236 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power E ̇ decreases to its observed minimum near 1033erg s−1, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties, and fit results to guide and be compared with modeling results. 
    more » « less
  8. null (Ed.)