skip to main content

Search for: All records

Creators/Authors contains: "Clark, Christopher M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    After decades of declining cropland area, the United States (US) experienced a reversal in land use/land cover change in recent years, with substantial grassland conversion to cropland in the US Midwest. Although previous studies estimated soil carbon (C) loss due to cropland expansion, other important environmental indicators, such as soil erosion and nutrient loss, remain largely unquantified. Here, we simulated the environmental impacts from the conversion of grassland to corn and soybeans for 12 US Midwestern states using the EPIC (Environmental Policy Integrated Climate) model. Between 2008 and 2016, over 2 Mha of grassland were converted to crop production in these states, with much less cropland concomitantly abandoned or retired from production. The net grassland-cropland conversion increased annual soil erosion by 7.9%, nitrogen (N) loss by 3.7%, and soil organic carbon loss by 5.6% relative to that of existing cropland, despite an associated increase in cropland area of only 2.5%. Notably, the above estimates represent the scenario of converting unmanaged grassland to tilled corn and soybeans, and impacts varied depending upon crop type and tillage regime. Corn and soybeans are dominant biofuel feedstocks, yet the grassland conversion and subsequent environmental impacts simulated in this study are likely not attributable solely to biofuel-driven land use change since other factors also contribute to corn and soybean prices and land use decisions. Nevertheless, our results suggest grassland conversion in the Upper Midwest has resulted in substantial degradation of soil quality, with implications for air and water quality as well. Additional conservation measures are likely necessary to counterbalance the impacts, particularly in areas with high rates of grassland conversion (e.g. the Dakotas, southern Iowa).

    more » « less
  2. Abstract

    Quantifying human impacts on the nitrogen (N) cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom‐up approaches to quantify tree‐based symbiotic BNF based on forest inventory data across the coterminous United States and SE Alaska. For all major N‐fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha−1yr−1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30–0.88 Tg N yr−1across the study area (1.4–3.4 kg N ha−1yr−1). Tree‐based N fixation displays distinct spatial variation that is dominated by two genera,Robinia(64% of tree‐associated BNF) andAlnus(24%). The third most important genus,Prosopis, accounted for 5%. Compared to published estimates of other N fluxes, tree‐associated BNF accounted for 0.59 Tg N yr−1, similar to asymbiotic (0.37 Tg N yr−1) and understory symbiotic BNF (0.48 Tg N yr−1), while N deposition contributed 1.68 Tg N yr−1and rock weathering 0.37 Tg N yr−1. Overall, our results reveal previously uncharacterized spatial patterns in tree BNF that can inform large‐scale N assessments and serve as a model for improving tree‐based BNF estimates worldwide. This updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, suggesting an even greater human impact on the N cycle.

    more » « less
  3. Abstract

    This paper presents coupled and decoupled multi‐autonomous underwater vehicle (AUV) motion planning approaches for maximizing information gain. The work is motivated by applications in which multiple AUVs are tasked with obtaining video footage for the photogrammetric reconstruction of underwater archeological sites. Each AUV is equipped with a video camera and side‐scan sonar. The side‐scan sonar is used to initially collect low‐resolution data to construct an information map of the site. Coupled and decoupled motion planning approaches with respect to this map are presented. Both planning methods seek to generate multi‐AUV trajectories that capture close‐up video footage of a site from a variety of different viewpoints, building on prior work in single‐AUV rapidly exploring random tree (RRT) motion planning. The coupled and decoupled planners are compared in simulation. In addition, the multiple AUV trajectories constructed by each planner were executed at archeological sites located off the coast of Malta, albeit by a single‐AUV due to limited resources. Specifically, each AUV trajectory for a plan was executed in sequence instead of simultaneously. Modifications are also made by both planners to a baseline RRT algorithm. The results of the paper present a number of trade‐offs between the two planning approaches and demonstrate a large improvement in map coverage efficiency and runtime.

    more » « less
  4. The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N  = 351) and Alzheimer’s disease (AD, N  = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk. 
    more » « less
  5. Abstract

    In the Alzheimer’s disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical management. Our goal was to develop generalizable multivariate models that integrate high-dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 3 years. Our main findings were i) we were able to build generalizable models with clinically relevant accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting progression; iii) our methodology allowed us to discover that expression ofCR1(complement receptor 1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive value. This work highlights the value of optimized machine learning approaches for analyzing multimodal patient information for making predictive assessments.

    more » « less