skip to main content

Search for: All records

Creators/Authors contains: "Clark, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Living brittle stars (Echinodermata: Ophiuroidea) employ a very different locomotion strategy to that of any other metazoan: five or more arms coordinate powerful strides for rapid movement across the ocean floor. This mode of locomotion is reliant on the unique morphology and arrangement of multifaceted skeletal elements and associated muscles and other soft tissues. The skeleton of many Palaeozoic ophiuroids differs markedly from that in living forms, making it difficult to infer their mode of locomotion and, therefore, to resolve the evolutionary history of locomotion in the group. Here, we present three-dimensional digital renderings of specimens of six ophiuroid taxa from the Lower Devonian Hunsrück Slate: four displaying the arm structure typical of Palaeozoic taxa ( Encrinaster roemeri, Euzonosoma tischbeinianum, Loriolaster mirabilis, Cheiropteraster giganteus ) and two ( Furcaster palaeozoicus , Ophiurina lymani ) with morphologies more similar to those in living forms. The use of three-dimensional digital visualization allows the structure of the arms of specimens of these taxa to be visualized in situ in the round, to our knowledge for the first time. The lack of joint interfaces necessary for musculoskeletally-driven locomotion supports the interpretation that taxa with offset ambulacrals would not be able to conduct this formmore »of locomotion, and probably used podial walking. This approach promises new insights into the phylogeny, functional morphology and ecological role of Palaeozoic brittle stars.« less
  2. Here, we report the draft genome sequences of 10 marine Pseudoalteromonas bacteria that were isolated, assembled, and annotated by undergraduate students participating in a marine microbial genomics course. Genomic comparisons suggest that 7 of the 10 strains are novel isolates, providing a resource for future marine microbiology investigations.
  3. Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. Abstract Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain uppermore »limits do not surpass indirect energy constraints for any of these targets.« less
    Free, publicly-accessible full text available June 1, 2023
  6. Free, publicly-accessible full text available April 1, 2023
  7. Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.
    Free, publicly-accessible full text available April 1, 2023
  8. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and alignedmore »spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 .« less
    Free, publicly-accessible full text available March 1, 2023
  9. Free, publicly-accessible full text available March 1, 2023