skip to main content

Search for: All records

Creators/Authors contains: "Clark, Genevieve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A central goal in creating long-distance quantum networks and distributed quantum computing is the development of interconnected and individually controlled qubit nodes. Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories, motivating the development of visible-spectrum, multi-channel photonic integrated circuit (PIC) systems for scalable atom control. However, it has remained an open challenge to realize optical programmability with a qubit layer that can achieve high optical detection probability over many optical channels. Here, we address this problem by introducing a modular architecture of piezoelectrically actuated atom-control PICs (APICs) and artificial atoms embedded in diamond nanostructures designed for high-efficiency free-space collection. The high-speed four-channel APIC is based on a splitting tree mesh with triple-phase shifter Mach–Zehnder interferometers. This design simultaneously achieves optically broadband operation at visible wavelengths, high-fidelity switching (>40dB) at low voltages, submicrosecond modulation timescales (>30MHz), and minimal channel-to-channel crosstalk for repeatable optical pulse carving. Via a reconfigurable free-space interconnect, we use the APIC to address single silicon vacancy color centers in individual diamond waveguides with inverse tapered couplers, achieving efficient single photon detection probabilities (∼15%) and second-order autocorrelation measurementsg(2)(0)<0.14 for all channels. The modularity of this distributed APIC–quantum memory system simplifies the quantum control problem, potentially enabling further scaling to thousands of channels.

    more » « less
  2. Abstract

    Large-scale generation of quantum entanglement between individually controllable qubits is at the core of quantum computing, communications, and sensing. Modular architectures of remotely-connected quantum technologies have been proposed for a variety of physical qubits, with demonstrations reported in atomic and all-photonic systems. However, an open challenge in these architectures lies in constructing high-speed and high-fidelity reconfigurable photonic networks for optically-heralded entanglement among target qubits. Here we introduce a programmable photonic integrated circuit (PIC), realized in a piezo-actuated silicon nitride (SiN)-in-oxide CMOS-compatible process, that implements anN×NMach–Zehnder mesh (MZM) capable of high-speed execution of linear optical transformations. The visible-spectrum photonic integrated mesh is programmed to generate optical connectivity on up toN = 8 inputs for a range of optically-heralded entanglement protocols. In particular, we experimentally demonstrated optical connections between 16 independent pairwise mode couplings through the MZM, with optical transformation fidelities averaging 0.991 ± 0.0063. The PIC’s reconfigurable optical connectivity suffices for the production of 8-qubit resource states as building blocks of larger topological cluster states for quantum computing. Our programmable PIC platform enables the fast and scalable optical switching technology necessary for network-based quantum information processors.

    more » « less
  3. Abstract

    Recent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations onNinput/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.

    more » « less
  4. Reliable operation of photonic integrated circuits at cryogenic temperatures would enable new capabilities for emerging computing platforms, such as quantum technologies and low-power cryogenic computing. The silicon-on-insulator platform is a highly promising approach to developing large-scale photonic integrated circuits due to its exceptional manufacturability, CMOS compatibility, and high component density. Fast, efficient, and low-loss modulation at cryogenic temperatures in silicon, however, remains an outstanding challenge, particularly without the addition of exotic nonlinear optical materials. In this paper, we demonstrate DC-Kerr-effect-based modulation at a temperature of 5 K at GHz speeds, in a silicon photonic device fabricated exclusively within a CMOS-compatible process. This work opens up a path for the integration of DC Kerr modulators in large-scale photonic integrated circuits for emerging cryogenic classical and quantum computing applications.

    more » « less
  5. Abstract

    Here, ultra‐long lifetimes of defect‐trapped single quantum emitters (SQEs) in monolayer WSe2/hBN heterostructures are reported. The lifetimes of these SQEs are approximately 225 ns, more than two orders of magnitude larger than what has been previously reported for defect‐trapped excitons in WSe2. These SQEs consist of co‐linearly polarized doublet peaks with a fine structure splitting of 0.45 meV. Second‐order correlation measurements show antibunched single‐photon emission with a g(2)(0) value of ≈0.13. Through numerical analysis and modeling, it is shown how such long‐lifetime single emitters can arise from bright and dark exciton coupling in antisite defects on the W sites. Additionally, high‐quality single‐photon emission over a wide range of lifetimes—from 2 ns to over 200 ns—is also reported, suggesting a variety of other possible defect structures present. The flexibility to generate high fidelity single‐photon emission, over a wide range of lifetimes in a single material system, has potential in many optical quantum computing applications from high‐bit‐rate single‐photon sources to quantum memory devices.

    more » « less