Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
PhotoCAN silicone elastomers, based on the thiol–ene reaction, exhibit rapid and reversible changes in dynamic modulus at room temperature when illuminated by UV. By combining results from magic angle spinning solid-state NMR as well as EPR and rheometry measurements, both under UV, it is concluded that the mechanical response can be attributed to a combination of dissociative, associative, and oxidation reactions. The cleavage of the C–S bonds under UV in the presence of an excess of thiyl radicals is identified as the reversible dissociative reaction responsible for abrupt drops in the storage modulus. A slower but concurrent reaction is a termination process involving thiyl radicals to form disulfide bonds. A kinetic model is developed that successfully relates the rates of the underlying reaction mechanisms to changes in the storage modulus. The results provide a basis for designing new, ambient temperature photoresponsive covalently adaptive network materials.more » « lessFree, publicly-accessible full text available November 28, 2024
-
Abstract Fatigue-induced cracking in steel components and other brittle materials of civil structures is one of the primary mechanisms of degrading structural integrity and can lead to sudden failures. However, these cracks are often difficult to detect during visual inspections, and off-the-shelf sensing technologies can generally only be used to monitor already identified cracks because of their spatial localization. A solution is to leverage advances in large area electronics to cover large surfaces with skin-type sensors. Here, the authors propose an elastic and stretchable multifunctional skin sensor that combines optical and capacitive sensing properties. The multifunctional sensor consists of a soft stretchable structural color film sandwiched between transparent carbon nanotube electrodes to form a parallel plate capacitor. The resulting device exhibits a reversible and repeatable structural color change from light blue to deep blue with an angle-independent property, as well as a measurable change in capacitance, under external mechanical strain. The optical function is passive and engineered to visually assist in localizing fatigue cracks, and the electrical function is added to send timely warnings to infrastructure operators. The performance of the device is characterized in a free-standing configuration and further extended to a fatigue crack monitoring application. A correlation coefficient-based image processing method is developed to quantify the strain measured by the optical color response. Results show that the sensor performs well in detecting and quantifying fatigue cracks using both the color and capacitive signals. In particular, the color signal can be measured with inexpensive cameras, and the electrical signal yields good linearity, resolution, and accuracy. Tests conducted on two steel specimens demonstrate a minimum detectable crack length of 0.84 mm.
-
Dielectric elastomer actuators (DEAs) are among the fastest and most energy-efficient, shape-morphing materials. To date, their shapes have been controlled using patterned electrodes or stiffening elements. While their actuated shapes can be analyzed for prescribed configurations of electrodes or stiffening elements (the forward problem), the design of DEAs that morph into target shapes (the inverse problem) has not been fully addressed. Here, we report a simple analytical solution for the inverse design and fabrication of programmable shape-morphing DEAs. To realize the target shape, two mechanisms are combined to locally control the actuation magnitude and direction by patterning the number of local active layers and stiff rings of varying shapes, respectively. Our combined design and fabrication strategy enables the creation of complex DEA architectures that shape-morph into simple target shapes, for instance, those with zero, positive, and negative Gaussian curvatures as well as complex shapes, such as a face.
-
Voltage-tunable elastomer composites that use shape instabilities for rapid structural color changes
Combining dielectric elastomers with photonic glasses enables homogeneous structural colors that can be rapidly tuned using voltage-triggered shape instabilities.
-
ABSTRACT: Covalent adaptive networks combine the advantages of cross-linked elastomers and dynamic bonding in a single system. In this work, we demonstrate a simple one-pot method to prepare thiol−ene elastomers that exhibit reversible photoinduced switching from an elastomeric gel to fluid state. This behavior can be generalized to thiol−ene cross-linked elastomers composed of different backbone chemistries (e.g., polydimethylsiloxane, polyethylene glycol, and polyurethane) and vinyl groups (e.g., allyl, vinyl ether, and acrylate). Photoswitching from the gel to fluid state occurs in seconds upon exposure to UV light and can be repeated over at least 180 cycles. These thiol−ene elastomers also exhibit the ability to heal, remold, and serve as reversible adhesives. KEYWORDS: covalent adaptive network, elastomer chemistry, click chemistry, self-healing, photoresponsive materials, adhesivesmore » « less
-
At high electric fields, the electrical energy stored in a soft elastomer dielectric can be comparable to the mechanical deformation energy it produces. This has led to the development of a class of electrically controlled, large strain dielectric elastomer actuators for soft robotics and energy harvesting devices. At large electric fields, the electro-mechanically induced deformation can lead to pseudo-periodic surface morphological instabilities which then grow with increasing field into stable pre-breakdown defects prior to final, irreversible electrical breakdown. Under these extremes of combined large electrical and mechanical deformations, the morphological evolution of the prebreakdown defects has not hitherto been reported. In contrast to the filamentary breakdown of much stiffer dielectrics, fluorescence confocal microscopy reveals an array of defects that evolve through a complex, reversible series of morphologies, transitioning from axi-symmetric ‘‘pits’’ to ‘‘crack-like’’ shapes that can ‘‘twist’’ and deflect, and finally open to form an array of holes. The observations suggest that the transitions, from axi-symmetric pits to flat, slit-like defects and then to an array of holes, are geometric instabilities. The implications for using a soft elastomer layer to increase the dielectric breakdown of a stiffer dielectric are discussed.more » « less
-
Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed.