skip to main content


Search for: All records

Creators/Authors contains: "Clauset, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. OBJECTIVE:

    To determine biomarkers other than CA 125 that could be used in identifying early-stage ovarian cancer.

    DATA SOURCES:

    Ovid MEDLINE ALL, EMBASE, Web of Science Core Collection, ScienceDirect, Clinicaltrials.gov, and CAB Direct were searched for English-language studies between January 2008 and April 2023 for the concepts of high-grade serous ovarian cancer, testing, and prevention or early diagnosis.

    METHODS OF STUDY SELECTION:

    The 5,523 related articles were uploaded to Covidence. Screening by two independent reviewers of the article abstracts led to the identification of 245 peer-reviewed primary research articles for full-text review. Full-text review by those reviewers led to the identification of 131 peer-reviewed primary research articles used for this review.

    TABULATION, INTEGRATION, AND RESULTS

    Of 131 studies, only 55 reported sensitivity, specificity, or area under the curve (AUC), with 36 of the studies reporting at least one biomarker with a specificity of 80% or greater specificity or 0.9 or greater AUC.

    CONCLUSION:

    These findings suggest that although many types of biomarkers are being tested in ovarian cancer, most have similar or worse detection rates compared with CA 125 and have the same limitations of poor detection rates in early-stage disease. However, 27.5% of articles (36/131) reported biomarkers with better sensitivity and an AUC greater than 0.9 compared with CA 125 alone and deserve further exploration.

     
    more » « less
  2. Abstract

    While inequalities in science are common, most efforts to understand them treat scientists as isolated individuals, ignoring the network effects of collaboration. Here, we develop models that untangle the network effects of productivity defined as paper counts, and prominence referring to high-impact publications, of individual scientists from their collaboration networks. We find that gendered differences in the productivity and prominence of mid-career researchers can be largely explained by differences in their coauthorship networks. Hence, collaboration networks act as a form of social capital, and we find evidence of their transferability from senior to junior collaborators, with benefits that decay as researchers age. Collaboration network effects can also explain a large proportion of the productivity and prominence advantages held by researchers at prestigious institutions. These results highlight a substantial role of social networks in driving inequalities in science, and suggest that collaboration networks represent an important form of unequally distributed social capital that shapes who makes what scientific discoveries.

     
    more » « less
  3. Abstract

    Despite the special role of tenure-track faculty in society, training future researchers and producing scholarship that drives scientific and technological innovation, the sociodemographic characteristics of the professoriate have never been representative of the general population. Here we systematically investigate the indicators of faculty childhood socioeconomic status and consider how they may limit efforts to diversify the professoriate. Combining national-level data on education, income and university rankings with a 2017–2020 survey of 7,204 US-based tenure-track faculty across eight disciplines in STEM, social science and the humanities, we show that faculty are up to 25 times more likely to have a parent with a Ph.D. Moreover, this rate nearly doubles at prestigious universities and is stable across the past 50 years. Our results suggest that the professoriate is, and has remained, accessible disproportionately to the socioeconomically privileged, which is likely to deeply shape their scholarship and their reproduction.

     
    more » « less
  4. Faculty at prestigious institutions produce more scientific papers, receive more citations and scholarly awards, and are typically trained at more-prestigious institutions than faculty with less prestigious appointments. This imbalance is often attributed to a meritocratic system that sorts individuals into more-prestigious positions according to their reputation, past achievements, and potential for future scholarly impact. Here, we investigate the determinants of scholarly productivity and measure their dependence on past training and current work environments. To distinguish the effects of these environments, we apply a matched-pairs experimental design to career and productivity trajectories of 2,453 early-career faculty at all 205 PhD-granting computer science departments in the United States and Canada, who together account for over 200,000 publications and 7.4 million citations. Our results show that the prestige of faculty’s current work environment, not their training environment, drives their future scientific productivity, while current and past locations drive prominence. Furthermore, the characteristics of a work environment are more predictive of faculty productivity and impact than mechanisms representing preferential selection or retention of more-productive scholars by more-prestigious departments. These results identify an environmental mechanism for cumulative advantage, in which an individual’s past successes are “locked in” via placement into a more prestigious environment, which directly facilitates future success. The scientific productivity of early-career faculty is thus driven by where they work, rather than where they trained for their doctorate, indicating a limited role for doctoral prestige in predicting scientific contributions. 
    more » « less