skip to main content

Search for: All records

Creators/Authors contains: "Clauss, Zachary S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cellular glycocalyx is involved in diverse biological phenomena in health and disease. Yet, molecular level studies have been challenged by a lack of tools to precisely manipulate this heterogeneous structure. Engineering of the cell surface using insertion of hydrophobic-terminal materials has emerged as a simple and efficient method with great promise for glycocalyx studies. However, there is a dearth of information about how the structure of the material affects membrane insertion efficiency and resulting density, the residence time of the material, or what types of cells can be utilized. Here, we examine a panel of synthetic mucin structures terminated in highly efficient cholesterylamide membrane anchors for their ability to engineer the glycocalyx of five different cell lines. We examined surface density, residence time and half-life, cytotoxicity, and the ability be passed to daughter cells. We report that this method is robust for a variety of polymeric structures, long-lasting, and well-tolerated by a variety of cell lines. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acidN-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds.

    more » « less