skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clement, Annaka M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Norian–Rhaetian boundary (Late Triassic) represents an important precursor extinction event to the end- Triassic mass extinction, but the biotic and geochemical shifts are not well-understood due to poor stratigraphic constraints. Here we examine the microfossil record for metazoans and protists on a Panthalassan carbonate ramp (Gabbs Formation, Nevada, U.S.A.) during the late Norian to mid-Rhaetian, and correlate changes in these assemblages with macrofossil shifts and geochemical data (strontium and carbon isotopes). In the latest Norian, demosponge spicules represent a small proportion of shallow marine biosediments. Demosponges are joined in the earliest Rhaetian by increasingly abundant hypersilicified sponge spicules and silica-limited hexactinellid sponge spicules synchronous with a negative strontium isotope excursion indicating increased hydrothermal or volcanic activity. Common carbonate microfossils such as echinoderm ossicles and ostracods are typically silicified in these deposits as well, suggesting increased silicic porewater. The source for increased dissolved silica in shallow marine systems is suggested to be hydrothermal vent degassing, likely associated with increased tectonic rifting activity. Mid-Rhaetian microfossil assemblages exhibit evidence for intermitted anoxia in reducing conditions, supporting a scenario in which environmental stress was a prolonged feature of much of the Rhaetian Stage, rather than a short-term event in the terminal Rhaetian. While there is no marine sedimentary record of volcanism recognized for this interval, biosedimentary assemblages may serve as proxies for geochemical conditions associated with rifting. 
    more » « less
  2. null (Ed.)