skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clubb, Kelsey_I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present spectra of the supernova (SN) impostor AT 2016blu spanning over a decade. This transient exhibits quasi-periodic outbursts with an $$\sim$$113 d period, likely triggered by periastron encounters in an eccentric binary system where the primary star is a luminous blue variable (LBV). The overall spectrum remains fairly consistent during quiescence and eruptions, with subtle changes in line-profile shapes and other details. Some narrow emission features indicate contamination from a nearby H ii region in the host galaxy, NGC 4559. Broader H $$\alpha$$ profiles exhibit Lorentzian shapes with full width at half-maximum intensity (FWHM) values that vary significantly, showing no correlation with photometric outbursts or the 113 d phase. At some epochs, H $$\alpha$$ exhibits asymmetric profiles with a stronger redshifted wing, while broad and sometimes multicomponent P Cygni absorption features occasionally appear, but are again uncorrelated with brightness or phase. These P Cygni absorptions have high velocities compared to the FWHM of the H $$\alpha$$ emission line, perhaps suggesting that the absorption component is not in the LBV’s wind, but is instead associated with a companion. The lack of phase dependence in line-profile changes may point to interaction between a companion and a variable or inhomogeneous primary wind, in an orbit with only mild eccentricity. Recent photometric data indicate that AT 2016blu experienced its 21st outburst around 2023 May/June, as predicted based on its period. This type of quasi-periodic LBV remains poorly understood, but its spectra and erratic light curve resemble some pre-SN outbursts such as those of SN 2009ip. 
    more » « less