A search for hidden-charm pentaquark states decaying to a range ofandfinal states, as well as doubly charmed pentaquark states toand, is made using samples of proton-proton collision data corresponding to an integrated luminosity ofrecorded by the LHCb detector at. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of thebaryon in thedecay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
© 2024 CERN, for the LHCb Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
The production of 𝜂 and 𝜂′ mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.02 and 13TeV and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16TeV. The studies are performed in center-of-mass (c.m.) rapidity regions 2.5<𝑦c.m.<3.5 (forward rapidity) and −4.0<𝑦c.m.<−3.0 (backward rapidity) defined relative to the proton beam direction. The 𝜂 and 𝜂′ production cross sections are measured differentially as a function of transverse momentum for 1.5<𝑝T<10GeV and 3<𝑝T<10GeV, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for 𝜂 and 𝜂′ mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of 𝜂 mesons are also used to calculate 𝜂/𝜋0 cross-section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as 𝜂 and 𝜂′ meson fragmentation.more » « lessFree, publicly-accessible full text available February 1, 2025
-
Garisto, R (Ed.)The ratios of branching fractions R(D*)= B(B0 --> D*+tau- nu(bar))/ B(B0--> D*+mu- nu(bar)) and R(D)= B(B0 --> D0tau- nu(bar))/ B(B0 --> D0mu- nu(bar)) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ− → μ−ντν¯μ. The measured values are R*D*)= 0.281+/- 0.018+/- 0.024 and R(D0)=0.441+/- 0.060+/- 0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ= −0.43. The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard modelmore » « less
-
A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model.more » « less