skip to main content


Search for: All records

Creators/Authors contains: "Cochran, William D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

     
    more » « less
  2. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet. 
    more » « less
  4. Abstract

    Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

     
    more » « less
  5. Abstract

    We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.800.15+0.17g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of13518+17M(0.420.06+0.05MJup). It has an orbital period of3.7926220.000010+0.000010days and an orbital eccentricity of0.060.04+0.07. We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.

     
    more » « less
  6. Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution. 
    more » « less
    Free, publicly-accessible full text available August 3, 2024
  7. Abstract We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A ( J = 11.93) is an M4 dwarf hosting a short-period (4.353326 ± 0.000005 days) gas giant ( M p = 0.14 ± 0.03 M J and R p = 0.71 ± 0.02 R J ) with a wide-separation white dwarf companion. TOI-5293 A ( J = 12.47) is an M3 dwarf hosting a short-period (2.930289 ± 0.000004 days) gas giant ( M p = 0.54 ± 0.07 M J and R p = 1.06 ± 0.04 R J ) with a wide-separation M dwarf companion. We characterize both systems using a combination of ground- and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b ( T eq = 563 ± 15 K and TSM = 138 − 27 + 29 ) and TOI-5293 A b ( T eq = 675 − 30 + 42 K and TSM = 92 ± 14) are two of the coolest gas giants among the population of hot Jupiter–sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and 3D obliquity measurements to probe system architecture and migration scenarios. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  8. Abstract

    Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of14.953.92+4.10M, and a density ofρ=0.610.17+0.18g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

     
    more » « less
  9. Abstract

    We present the latest and most precise characterization of the architecture for the ancient (≈11 Gyr) Kepler-444 system, which is composed of a K0 primary star (Kepler-444 A) hosting five transiting planets and a tight M-type spectroscopic binary (Kepler-444 BC) with an A–BC projected separation of 66 au. We have measured the system’s relative astrometry using the adaptive optics imaging from Keck/NIRC2 and Kepler-444 A’s radial velocities from the Hobby-Eberly Telescope and reanalyzed relative radial velocities between BC and A from Keck/HIRES. We also include the Hipparcos-Gaia astrometric acceleration and all published astrometry and radial velocities in an updated orbit analysis of BC’s barycenter. These data greatly extend the time baseline of the monitoring and lead to significant updates to BC’s barycentric orbit compared to previous work, including a larger semimajor axis (a=52.22.7+3.3au), a smaller eccentricity (e= 0.55 ± 0.05), and a more precise inclination (i=85404+03). We have also derived the first dynamical masses of B and C components. Our results suggest that Kepler-444 A’s protoplanetary disk was likely truncated by BC to a radius of ≈8 au, which resolves the previously noticed tension between Kepler-444 A’s disk mass and planet masses. Kepler-444 BC’s barycentric orbit is likely aligned with those of A’s five planets, which might be primordial or a consequence of dynamical evolution. The Kepler-444 system demonstrates that compact multiplanet systems residing in hierarchical stellar triples can form at early epochs of the universe and survive their secular evolution throughout cosmic time.

     
    more » « less
  10. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M(83.81 ± 2.10MJ), a radius of0.11140.0050+0.0048R(1.08410.04870.0467RJ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of1.97160.0083+0.0080days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.

     
    more » « less