skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Codsi, Julien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Counting independent sets in graphs and hypergraphs under a variety of restrictions is a classical question with a long history. It is the subject of the celebrated container method which found numerous spectacular applications over the years. We consider the question of how many independent sets we can have in a graph under structural restrictions. We show that any$$n$$-vertex graph with independence number$$\alpha$$without$$bK_a$$as an induced subgraph has at most$$n^{O(1)} \cdot \alpha ^{O(\alpha )}$$independent sets. This substantially improves the trivial upper bound of$$n^{\alpha },$$whenever$$\alpha \le n^{o(1)}$$and gives a characterisation of graphs forbidding which allows for such an improvement. It is also in general tight up to a constant in the exponent since there exist triangle-free graphs with$$\alpha ^{\Omega (\alpha )}$$independent sets. We also prove that if one in addition assumes the ground graph is chi-bounded one can improve the bound to$$n^{O(1)} \cdot 2^{O(\alpha )}$$which is tight up to a constant factor in the exponent. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026