The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract US maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central US and substantially reduced them over the southern US, benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing US crops to more harmful heat extremes.
-
Free, publicly-accessible full text available August 4, 2023
-
Abstract The frequency of heat waves (defined as daily temperature exceeding the local 90th percentile for at least three consecutive days) during summer in the United States is examined for daily maximum and minimum temperature and maximum apparent temperature, in recent observations and in 10 CMIP5 models for recent past and future. The annual average percentage of days participating in a heat wave varied between approximately 2% and 10% in observations and in the model’s historical simulations during 1979–2005. Applying today’s temperature thresholds to future projections, heat-wave frequencies rise to more than 20% by 2035–40. However, given the models’ slight overestimation of frequencies and positive trend rates during 1979–2005, these projected heat-wave frequencies should be regarded cautiously. The models’ overestimations may be associated with their higher daily autocorrelation than is found in observations. Heat-wave frequencies defined using apparent temperature, reflecting both temperature and atmospheric moisture, are projected to increase at a slightly (and statistically significantly) faster rate than for temperature alone. Analyses show little or no changes in the day-to-day variability or persistence (autocorrelation) of extreme temperature between recent past and future, indicating that the future heat-wave frequency will be due predominantly to increases in standardized (using historical period statistics)more »
-
Abstract Nonlinear increases in warm season temperatures are projected for many regions, a phenomenon we show to be associated with relative surface drying. However, negative human health impacts are physiologically linked to combinations of high temperatures and high humidity. Since the amplified warming and drying are concurrent, the net effect on humid-heat, as measured by the wet bulb temperature (
T W), is uncertain. We demonstrate that globally, on the hottest days of the year, the positive effect of amplified warming onT Wis counterbalanced by a larger negative effect resulting from drying. As a result, the largest increases inT WandT xdo not occur on the same days. Compared to a world with linear temperature change, the drying associated with nonlinear warming dampens mid-latitudeT Wincreases by up to 0.5 °C, and also dampens the rise in frequency of dangerous humid-heat (T W > 27 °C) by up to 5 d per year in parts of North America and Europe. Our results highlight the opposing interactions among temperature and humidity changes and their effects onT W, and point to the importance of constraining uncertainty in hydrological and warm season humidity changes to best position the management of future humid-heat risks.