skip to main content


Search for: All records

Creators/Authors contains: "Cohen, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Excitable media, ranging from bioelectric tissues and chemical oscillators to forest fires and competing populations, are nonlinear, spatially extended systems capable of spiking. Most investigations of excitable media consider situations where the amplifying and suppressing forces necessary for spiking coexist at every point in space. In this case, spikes arise due to local bistabilities, which require a fine-tuned ratio between local amplification and suppression strengths. But, in nature and engineered systems, these forces can be segregated in space, forming structures like interfaces and boundaries. Here, we show how boundaries can generate and protect spiking when the reacting components can spread out: Even arbitrarily weak diffusion can cause spiking at the edge between two non-excitable media. This edge spiking arises due to a global bistability, which can occur even if amplification and suppression strengths do not allow spiking when mixed. We analytically derive a spiking phase diagram that depends on two parameters: i) the ratio between the system size and the characteristic diffusive length-scale and ii) the ratio between the amplification and suppression strengths. Our analysis explains recent experimental observations of action potentials at the interface between two non-excitable bioelectric tissues. Beyond electrophysiology, we highlight how edge spiking emerges in predator–prey dynamics and in oscillating chemical reactions. Our findings provide a theoretical blueprint for a class of interfacial excitations in reaction–diffusion systems, with potential implications for spatially controlled chemical reactions, nonlinear waveguides and neuromorphic computation, as well as spiking instabilities, such as cardiac arrhythmias, that naturally occur in heterogeneous biological media.

     
    more » « less
  2. The human brain represents one of the most complex biological systems, containing billions of neurons interconnected through trillions of synapses. Inherent to the brain is a biochemical complexity involving ions, signaling molecules, and peptides that regulate neuronal activity and allow for short- and long-term adaptations. Large-scale and noninvasive imaging techniques, such as fMRI and EEG, have highlighted brain regions involved in specific functions and visualized connections between different brain areas. A major shortcoming, however, is the need for more information on specific cell types and neurotransmitters involved, as well as poor spatial and temporal resolution. Recent technologies have been advanced for neuronal circuit mapping and implemented in behaving model organisms to address this. Here, we highlight strategies for targeting specific neuronal subtypes, identifying, and releasing signaling molecules, controlling gene expression, and monitoring neuronal circuits in real-timein vivo. Combined, these approaches allow us to establish direct causal links from genes and molecules to the systems level and ultimately to cognitive processes.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    To better understand the contribution of alpine lakes to global CO2emissions, carbon dioxide concentrations and fluxes to the atmosphere were measured in five high‐elevation lakes and five reservoirs in the Sierra Nevada, California. Median summer surface concentrations of dissolved CO2(reservoirs: 21.1μM, lakes: 23.7μM) were supersaturated for most of the ice‐free season. Median diffusive flux of CO2was low as compared to other inland waters (lakes: 260 mg CO2m−2d−1, reservoirs: 192 mg CO2m−2d−1). Linear mixed modeling demonstrated that the length of ice cover, persisting for 5–9 months and allowing for accumulation of under‐ice CO2, was a strong predictor of summer surface CO2. During the ice‐free period, surface evasion of CO2was highest for the first 40 d after ice‐off when carbon dioxide that had accumulated during winter was released, although supersaturation and evasion continued until fall at most sites despite low rates of ecosystem metabolism. This study suggests that the contribution of high‐elevation, oligotrophic lakes and reservoirs in the Sierra to global CO2emissions are small despite persistent supersaturation, and are primarily driven by the duration of ice cover.

     
    more » « less