Gut morphology frequently reflects the food organisms digest. Gizzards are organs of the gut found in archosaurs and fishes that mechanically reduce food to aid digestion. Gizzards are thought to compensate for edentulism and/or provide an advantage when consuming small, tough food items (e.g., phytoplankton and algae). It is unknown how widespread gizzards are in fishes and how similar these structures are among different lineages. Here, we investigate the distribution of gizzards across bony fishes to (1) survey different fishes for gizzard presence, (2) compare the histological structure of gizzards in three species, (3) estimate how often gizzards have evolved in fishes, and (4) explore whether anatomical and ecological traits like edentulism and microphagy predict gizzard presence. According to our analyses, gizzards are rare across bony fishes, evolving only six times in a broad taxonomic sampling of 51 species, and gizzard presence is not clearly correlated with factors like gut length or dentition. We find that gizzard morphology varies among the lineages where one is present, both macroscopically (presence of a crop) and microscopically (varying tissue types). We conclude that gizzards likely aid in the mechanical reduction of food in fishes that have lost an oral dentition in their evolutionary past; however, the relative scarcity of gizzards suggests they are just one of many possible solutions for processing tough, nutrientâpoor food items. Gizzards have long been present in the evolutionary history of fishes, can be found in a wide variety of marine and freshwater clades, and likely have been overlooked in many taxa.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available February 1, 2025 -
Tooth replacement rates of polyphyodont cartilaginous and bony fishes are hard to determine because of a lack of obvious patterning and maintaining specimens long enough to observe replacement. Pulse-chase is a fluorescent technique that differentially colours developing mineralized tissue. We present in situ tooth replacement rate and position data for the oral and pharyngeal detentions of Ophiodon elongatus (Pacific lingcod). We assessed over 10 000 teeth, in 20 fish, and found a daily replacement rate of about two teeth (3.6% of the dentition). The average tooth is in the dental battery for 27 days. The replacement was higher in the lower pharyngeal jaw (LPJ). We found no difference between replacement rates of feeding and non-feeding fish, suggesting feeding was not a driver of tooth replacement. Lingcod teeth have both a size and location fate; smaller teeth at one spot will not grow into larger teeth, even if a large tooth nearby is lost. We also found increased rates of replacement at the posterior of the LPJ relative to the anterior. We propose that lingcod teeth do not migrate in the jaw as they develop; their teeth are fated in size and location, erupting in their functional position.more » « less
-
Abstract While functional morphologists have long studied the evolution of anatomical structures, the origin of morphological novelties has received less attention. When such novelties first originate they must become incorporated into an integrated system to be rendered fully functional. Thus, developmental integration is key at the origin of morphological novelties. However, given enough evolutionary time such integration may be broken, allowing for a division of labor that is facilitated by subsequent decoupling of structures. Cypriniformes represent a diverse group of freshwater fishes characterized by several trophic novelties that include: kinethmoid-mediated premaxillary protrusion, a muscular palatal and post-lingual organ, hypertrophied lower pharyngeal jaws that masticate against the base of the neurocranium, novel pharyngeal musculature controlling movement of the hypertrophied lower pharyngeal jaws, and in a few species an incredibly complex epibranchial organ used to aggregate filtered phytoplankton. Here, we use the wealth of such trophic novelties in different cypriniform fishes to present case studies in which developmental integration allowed for the origin of morphological innovations. As proposed in case studies 1 and 2 trophic innovations may be associated with both morphological and lineage diversification. Alternatively, case studies 3 and 4 represent a situation where ecological niche was expanded but with no concomitant increase in species diversity.more » « less