skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cohen, Sagy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Humans have drastically disrupted the global sediment cycle. Suspended sediment flux and concentration are key controls over both river morphology and river ecosystems. Our ability to understand sediment dynamics within river corridors is limited by observations. Here, we present RivSed, a database of satellite observations of suspended sediment concentration (SSC) from 1984 to 2018 across 460 large (>60 m wide) US rivers that provides a new, spatially explicit view of river sediment. We found that 32% of US rivers have a declining temporal trend in sediment concentration, with a mean reduction of 40% since 1984, whereas only 2% have an increasing trend. Most rivers (52%) show decreasing sediment concentration longitudinally moving downstream, typically due to a few large dams rather than the accumulated effect of many small dams. Comparing our observations with modeled ‘pre-dam’ longitudinal SSC, most rivers (53%) show different patterns. However, contemporary longitudinal patterns in concentration are remarkably stable from year to year since 1984, with more stability in large, highly managed rivers with less cropland. RivSed has broad applications for river geomorphology and ecology and highlights anthropogenic effects on river corridors across the US.

     
    more » « less
  2. null (Ed.)
    Turbidity currents deliver sediment rapidly from the continental shelf to the slope and beyond; and can be triggered by processes such as shelf resuspension during oceanic storms; mass failure of slope deposits due to sediment- and wave-pressure loadings; and localized events that grow into sustained currents via self-amplifying ignition. Because these operate over multiple spatial and temporal scales, ranging from the eddy-scale to continental-scale; coupled numerical models that represent the full transport pathway have proved elusive though individual models have been developed to describe each of these processes. Toward a more holistic tool, a numerical workflow was developed to address pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down continental slope canyons of the northern Gulf of Mexico, where offshore infrastructure is susceptible to damage by turbidity currents. Workflow components included: (1) a calibrated simulator for fluvial discharge (Water Balance Model - Sediment; WBMsed); (2) domain grids for seabed sediment textures (dbSEABED); bathymetry, and channelization; (3) a simulator for ocean dynamics and resuspension (the Regional Ocean Modeling System; ROMS); (4) A simulator (HurriSlip) of seafloor failure and flow ignition; and (5) A Reynolds-averaged Navier–Stokes (RANS) turbidity current model (TURBINS). Model simulations explored physical oceanic conditions that might generate turbidity currents, and allowed the workflow to be tested for a year that included two hurricanes. Results showed that extreme storms were especially effective at delivering sediment from coastal source areas to the deep sea, at timescales that ranged from individual wave events (~hours), to the settling lag of fine sediment (~days). 
    more » « less
  3. Abstract

    Bedload is notoriously challenging to measure and model; its dynamics, therefore, remains largely unknown in most fluvial systems worldwide. We present results from a global scale bedload flux model as part of the WBMsed modeling framework that well predict the distribution of water discharge, suspended sediment and bedload. The sensitivity of bedload predictions to river slope, particle size, discharge, river width, and suspended sediment were analyzed, showing the model to be most responsive to spatial dynamics in river discharge and slope. The relationship between bedload and total sediment flux is analyzed globally, and for representative longitudinal river profiles (Amazon, Mississippi, and Lena Rivers). The results show that while the proportion of bedload decreases from headwaters to the coasts, there is considerable variability between basins and along river corridors. The topographic and hydrological longitudinal profiles of rivers are shown to be the key drivers of bedload trends, with fluctuations in slope controlling its more local dynamics. Estimates of water and sediment fluxes to global oceans from 2,067 largest river outlets (draining 67% of the global continental area) are provided. Estimated water discharge at 30,579 km3/y corresponds well to past estimates; however, sediment flux is higher. Total global particulate load of 17.8 Gt/y is delivered to global oceans, 14.8 Gt/y as washload, 1.1 Gt/y as bedload, and 2.6 Gt/y as suspended bed material. The largest 25 rivers are predicted to transport more than half of the total sediment flux to global oceans.

     
    more » « less
  4. Abstract

    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

     
    more » « less