skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cohn, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mavrikis, M; Lalle, S; Azevedo, R; Biswas, G; Roll, I (Ed.)
    Exploratory learning environments (ELEs), such as simulation-based platforms and open-ended science curricula, promote hands-on exploration and problem-solving but make it difficult for teachers to gain timely insights into students' conceptual understanding. This paper presents LearnLens, a generative AI (GenAI)-enhanced teacher-facing dashboard designed to support problem-based instruction in middle school science. LearnLens processes students' open-ended responses from digital assessments to provide various insights, including sample responses, word clouds, bar charts, and AI-generated summaries. These features elucidate students' thinking, enabling teachers to adjust their instruction based on emerging patterns of understanding. The dashboard was informed by teacher input during professional development sessions and implemented within a middle school Earth science curriculum. We report insights from teacher interviews that highlight the dashboard's usability and potential to guide teachers' instruction in the classroom. 
    more » « less
    Free, publicly-accessible full text available July 26, 2026
  2. Zhai, X; Latif, E; Liu, N; Biswas, G; Yin, Y (Ed.)
    Collaborative dialogue offers rich insights into students’ learning and critical thinking, which is essential for personalizing pedagogical agent interactions in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, hallucinations undermine confidence, trust, and instructional value. Retrieval-augmented generation (RAG) grounds LLM outputs in curated knowledge, but requires a clear semantic link between user input and a knowledge base, which is often weak in student dialogue. We propose log-contextualized RAG (LC-RAG), which enhances RAG retrieval by using the environment logs to contextualize collaborative discourse. Our findings show that LCRAG improves retrieval over a discourse-only baseline and allows our collaborative peer agent, Copa, to deliver relevant, personalized guidance that supports students’ critical thinking and epistemic decision-making in a collaborative computational modeling environment, C2STEM. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026