skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Colón, Yamil_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The application of machine learning (ML) techniques in materials science has revolutionized the pace and scope of materials research and design. In the case of metal–organic frameworks (MOFs), a promising class of materials due to their tunable properties and versatile applications in gas adsorption and separation, ML has helped survey the vast material space. This study explores the integration of reinforcement learning (RL), specifically Q‐learning, within an active learning (AL) context, combined with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We demonstrate the effectiveness of the RL‐driven framework in guiding the selection of training data points and optimizing predictive model performance for methane and carbon dioxide adsorption, using two different reward metrics. Our results highlight the integration of RL as an AL method for adsorption predictions in MFs, and how it compares to a previously implemented AL scheme. 
    more » « less