skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Coleman, Natalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Infrastructure resilience plays an important role in mitigating the negative impacts of natural hazards by ensuring the continued accessibility and availability of resources. Increasingly, equity is recognized as essential for infrastructure resilience. Yet, after about a decade of research on equity in infrastructure resilience, what is missing is a systematic overview of the state of the art and a research agenda across different infrastructures and hazards. To address this gap, this paper presents a systematic review of equity literature on infrastructure resilience in relation to natural hazard events. In our systematic review of 99 studies, we followed an 8-dimensional assessment framework that recognizes 4 equity definitions including distributional-demographic, distributional-spatial, procedural, and capacity equity. Significant findings show that (1) the majority of studies found were located in the US, (2) interest in equity in infrastructure resilience has been exponentially rising, (3) most data collection methods used descriptive and open-data, particularly with none of the non-US studies using human mobility data, (4) limited quantitative studies used non-linear analysis such as agent-based modeling and gravity networks, (5) distributional equity is mostly studied through disruptions in power, water, and transportation caused by flooding and tropical cyclones, and (6) other equity aspects, such as procedural equity, remain understudied. We propose that future research directions could quantify the social costs of infrastructure resilience and advocate a better integration of equity into resilience decision-making. This study fills a critical gap in how equity considerations can be integrated into infrastructure resilience against natural hazards, providing a comprehensive overview of the field and developing future research directions to enhance societal outcomes during and after disasters. As such, this paper is meant to inform and inspire researchers, engineers, and community leaders to understand the equity implications of their work and to embed equity at the heart of infrastructure resilience plans.

     
    more » « less
  2. Abstract

    Lifestyle recovery captures the collective effects of population activities as well as the restoration of infrastructure and business services. This study uses a novel approach to leverage privacy-enhanced location intelligence data, which is anonymized and aggregated, to characterize distinctive lifestyle patterns and to unveil recovery trajectories after 2017 Hurricane Harvey in Harris County, Texas (USA). The analysis integrates multiple data sources to record the number of visits from home census block groups (CBGs) to different points of interest (POIs) in the county during the baseline and disaster periods. For the methodology, the research utilizes unsupervised machine learning and ANOVA statistical testing to characterize the recovery of lifestyles using privacy-enhanced location intelligence data. First, primary clustering using k-means characterized four distinct essential and non-essential lifestyle patterns. For each primary lifestyle cluster, the secondary clustering characterized the impact of the hurricane into four possible recovery trajectories based on the severity of maximum disruption and duration of recovery. The findings further reveal multiple recovery trajectories and durations within each lifestyle cluster, which imply differential recovery rates among similar lifestyles and different demographic groups. The impact of flooding on lifestyle recovery extends beyond the flooded regions, as 59% of CBGs with extreme recovery durations did not have at least 1% of direct flooding impacts. The findings offer a twofold theoretical significance: (1) lifestyle recovery is a critical milestone that needs to be examined, quantified, and monitored in the aftermath of disasters; (2) spatial structures of cities formed by human mobility and distribution of facilities extend the spatial reach of flood impacts on population lifestyles. These provide novel data-driven insights for public officials and emergency managers to examine, measure, and monitor a critical milestone in community recovery trajectory based on the return of lifestyles to normalcy.

     
    more » « less
  3. Abstract Non-pharmacologic interventions (NPIs) promote protective actions to lessen exposure risk to COVID-19 by reducing mobility patterns. However, there is a limited understanding of the underlying mechanisms associated with reducing mobility patterns especially for socially vulnerable populations. The research examines two datasets at a granular scale for five urban locations. Through exploratory analysis of networks, statistics, and spatial clustering, the research extensively investigates the exposure risk reduction after the implementation of NPIs to socially vulnerable populations, specifically lower income and non-white populations. The mobility dataset tracks population movement across ZIP codes for an origin–destination (O–D) network analysis. The population activity dataset uses the visits from census block groups (cbg) to points-of-interest (POIs) for network analysis of population-facilities interactions. The mobility dataset originates from a collaboration with StreetLight Data, a company focusing on transportation analytics, whereas the population activity dataset originates from a collaboration with SafeGraph, a company focusing on POI data. Both datasets indicated that low-income and non-white populations faced higher exposure risk. These findings can assist emergency planners and public health officials in comprehending how different populations are able to implement protective actions and it can inform more equitable and data-driven NPI policies for future epidemics. 
    more » « less
  4. Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches. 
    more » « less
  5. Abstract

    Smart resilience is the beneficial result of the collision course of the fields of data science and urban resilience to flooding. The objective of this study is to propose and demonstrate a smart flood resilience framework that leverages heterogeneous community-scale big data and infrastructure sensor data to enhance predictive risk monitoring and situational awareness. The smart flood resilience framework focuses on four core capabilities that could be augmented by the use of heterogeneous community-scale big data and analytics techniques: (1) predictive flood risk mapping; (2) automated rapid impact assessment; (3) predictive infrastructure failure prediction and monitoring; and (4) smart situational awareness capabilities. We demonstrate the components of these core capabilities of the smart flood resilience framework in the context of the 2017 Hurricane Harvey in Harris County, Texas. First, we present the use of flood sensors for the prediction of floodwater overflow in channel networks and inundation of co-located road networks. Second, we discuss the use of social media and machine learning techniques for assessing the impacts of floods on communities and sensing emotion signals to examine societal impacts. Third, we describe the use of high-resolution traffic data in network-theoretic models for nowcasting of flood propagation on road networks and the disrupted access to critical facilities, such as hospitals. Fourth, we introduce how location-based and credit card transaction data were used in spatial analyses to proactively evaluate the recovery of communities and the impacts of floods on businesses. These analyses show that the significance of core capabilities of the smart flood resilience framework in helping emergency managers, city planners, public officials, responders, and volunteers to better cope with the impacts of catastrophic flooding events.

     
    more » « less
  6. This research establishes a methodological framework for quantifying community resilience based on fluctuations in a population's activity during a natural disaster. Visits to points-of-interests (POIs) over time serve as a proxy for activities to capture the combined effects of perturbations in lifestyles, the built environment and the status of business. This study used digital trace data related to unique visits to POIs in the Houston metropolitan area during Hurricane Harvey in 2017. Resilience metrics in the form of systemic impact, duration of impact, and general resilience (GR) values were examined for the region along with their spatial distributions. The results show that certain categories, such as religious organizations and building material and supplies dealers had better resilience metrics—low systemic impact, short duration of impact, and high GR. Other categories such as medical facilities and entertainment had worse resilience metrics—high systemic impact, long duration of impact and low GR. Spatial analyses revealed that areas in the community with lower levels of resilience metrics also experienced extensive flooding. This insight demonstrates the validity of the approach proposed in this study for quantifying and analysing data for community resilience patterns using digital trace/location-intelligence data related to population activities. While this study focused on the Houston metropolitan area and only analysed one natural hazard, the same approach could be applied to other communities and disaster contexts. Such resilience metrics bring valuable insight into prioritizing resource allocation in the recovery process. 
    more » « less