skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Collins, Hannah I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ingestion of microplastics (MP) by suspension‐feeding bivalves has been well‐documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel,Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF orSpartinaspp. particles (dried, ground marsh grass), ca. 250–500 μm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community thanSpartinaspp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF orSpartinaspp. Post‐ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects. 
    more » « less
  2. Abstract The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut‐microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts ofM. eduliscollected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no‐food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non‐depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments. 
    more » « less