skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Collow, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Antarctic atmospheric rivers (ARs) are driven by their synoptic environments and lead to profound and varying impacts along the coastlines and over the continent. The definition and detection of ARs over Antarctica accounts for large uncertainty in AR metrics, and consequently, impacts quantification. We find that Antarctic‐specific detection tools consistently capture the AR footprint inland over ice sheets, whereas most global detection tools do not. Large‐scale synoptic environments and associated ARs, however, are broadly consistent across detection tools. Using data from the Atmospheric River Tracking Method Intercomparison Project and global reanalyses, we quantify the uncertainty in Antarctic AR metrics and evaluate large‐scale environments in the context of decadal and interannual modes of variability. The Antarctic western hemisphere has stronger connections to both decadal and interannual modes of variability compared to East Antarctica, and the Indian Ocean Dipole’s influence on Antarctic ARs is stronger while in phase with El Nino Southern Oscillation.

     
    more » « less