skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Colunga, Eliana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The current system of peer review drives racial and gender disparities in publication and funding outcomes and can suppress the perspectives of marginalized scholars. Established researchers have an opportunity to help to build a fairer and more inclusive peer review culture by advocating for and empowering their trainees. 
    more » « less
  2. When young children create, they are exploring their emerging skills. And when young children reflect, they are transforming their learning experiences. Yet early childhood play environments often lack toys and tools to scaffold reflection. In this work, we design a stuffed animal robot to converse with young children and prompt creative reflection through open-ended storytelling. We also contribute six design goals for child-robot interaction design. In a hybrid Wizard of Oz study, 33 children ages 4-5 years old across 10 U.S. states engaged in creative play then conversed with a stuffed animal robot to tell a story about their creation. By analyzing children’s story transcripts, we discover four approaches that young children use when responding to the robot’s reflective prompting: Imaginative, Narrative Recall, Process-Oriented, and Descriptive Labeling. Across these approaches, we find that open-ended child-robot interaction can integrate personally meaningful reflective storytelling into diverse creative play practices. 
    more » « less
  3. Can we predict the words a child is going to learn next given information about the words that a child knows now? Do different representations of a child’s vocabulary knowledge affect our ability to predict the acquisition of lexical items for individual children? Past research has often focused on population statistics of vocabulary growth rather than prediction of words an individual child is likely to learn next. We consider a neural network approach to predict vocabulary acquisition. Specifically, we investigate how best to represent the child’s current vocabulary in order to accurately predict future learning. The models we consider are based on qualitatively different sources of information: descriptive information about the child, the specific words a child knows, and representations that aim to capture the child’s aggregate lexical knowledge. Using longitudinal vocabulary data from children aged 15-36 months, we construct neural network models to predict which words are likely to be learned by a particular child in the coming month. Many models based on child-specific vocabulary information outperform models with child information only, suggesting that the words a child knows influence prediction of future language learning. These models provide an understanding of the role of current vocabulary knowledge on future lexical growth. 
    more » « less