skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Comita, Liza S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old‐growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5‐year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1‐m2seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1‐m2seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially‐explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly‐available, long‐term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non‐commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set.

     
    more » « less
  2. Free, publicly-accessible full text available February 1, 2024
  3. null (Ed.)
    Over the past five decades, many studies have examined the Janzen-Connell hypothesis, which posits that host-specific natural enemies, such as insect herbivores and fungal pathogens, promote plant species coexistence by providing a recruitment advantage to rare plant species. Recently, researchers have been exploring new and exciting angles on plant-enemy interactions that have yielded novel insights into this long-standing hypothesis. Here, we highlight some empirical advances in our understanding of plant-enemy interactions in tropical forests, including improved understanding of variation in plant species’ susceptibility to enemy effects, as well as insect and pathogen host ranges. We then review recent advances in related ecological theory. These theoretical studies have confirmed that specialist natural enemies can promote tree diversity. However, they have also shown that the impact of natural enemies may be weakened, or that natural enemies could even cause species exclusion, depending on enemy host range, the spatial extent of enemy effects, and variation among plant species in seed dispersal or enemy susceptibility. Finally, we end by discussing how human impacts on tropical forests, such as fragmentation, hunting, and climate change, may alter the plant-enemy interactions that contribute to tropical forest diversity. 
    more » « less
  4. Abstract

    Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating the effects of climate change in diverse plant communities. Turgor loss point (πtlp) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlpand species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e., their survival response to drought), combined with measurements of πtlpfor 16 tree species, we show a negative relationship between πtlpand seedling drought resistance. Using long‐term forest plot data, we also show that πtlppredicts seedling survival responses to a severe El Niño‐related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlpexhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlpas a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.

     
    more » « less
  5. Abstract

    In tropical forests, drought and herbivory represent two potent stresses on seedlings. Climate change is expected to increase the frequency of severe droughts in many tropical forests, which may influence seedling vulnerability to herbivores if drought stress affects seedling palatability. Furthermore, contrasting selective pressures in wetter vs drier forests could mean that species well‐adapted to herbivores are less drought resistant and vice versa. In this study, we measured seedling performance and herbivory in a common garden experiment where seedlings of 15 tree species were subjected to irrigation or rainfall exclusion treatments across two dry seasons in Panama. Water manipulation had no effects on foliar herbivory during the experiment for all species combined and for 14 of the 15 focal species when analyzed separately. There was large variation among species in herbivore damage, but no relationship between the sensitivity of species to drought and the amount of herbivory they experienced. Altogether, our findings suggest that increasing drought stress is unlikely to directly alter tropical tree seedling susceptibility to herbivore attack in this forest. Additional studies are needed to determine whether drought alters tropical plant‐herbivore interactions via other mechanisms, such as through changes in herbivorous insect communities and/or increases in fitness costs of herbivory.

    Abstract in Spanish is available with online material.

     
    more » « less
  6. Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species,Virola surinamensis(Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence—albeit less strongly than species-specific pathogens—and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.

     
    more » « less
  7. Abstract

    As extreme climate events are predicted to become more frequent because of global climate change, understanding their impacts on natural systems is crucial. Tropical forests are vulnerable to droughts associated with extreme El Niño events. However, little is known about how tropical seedling communities respond to El Niño–related droughts, even though patterns of seedling survival shape future forest structure and diversity. Using long‐term data from eight tropical moist forests spanning a rainfall gradient in central Panama, we show that community‐wide seedling mortality increased by 11% during the extreme 2015–16 El Niño, with mortality increasing most in drought‐sensitive species and in wetter forests. These results indicate that severe El Niño–related droughts influence understory dynamics in tropical forests, with effects varying both within and across sites. Our findings suggest that predicted increases in the frequency of extreme El Niño events will alter tropical plant communities through their effects on early life stages.

     
    more » « less
  8. Abstract

    Over the past decades, tropical forests have experienced both compositional and structural changes. In the Neotropics, researchers at multiple sites have observed significant increases in the abundance and biomass of lianas (i.e. woody vines) relative to trees. However, the role of dynamics at early life stages in contributing to increasing liana abundance remains unclear.

    We took advantage of a unique dataset on seedling dynamics over 16 years in ~20 000 1‐m2plots in a tropical forest in Panama to examine temporal and spatial trends in liana and tree seedling abundance.

    We found that the relative abundance of liana seedlings increased across the study period, from 0.18 in 2001 to 0.24 in 2017. However, increases in liana seedling relative abundance appear to have levelled off in more recent years. The observed increases in liana relative abundance appear to be the result of both higher survival and higher recruitment rates of liana seedlings compared to tree seedlings.

    Increasing liana abundance in the seedling layer was not explained by annual variation in dry season length, total rainfall or the proportion of area occupied by canopy gaps. In addition, liana seedlings did not exhibit a demographic advantage (i.e. higher recruitment or survival) over tree seedlings in dry habitats.

    Synthesis.Our results reveal that seedling communities experienced important compositional changes in the past, but liana seedling relative abundance may have stabilized in recent years. Longer‐term monitoring is needed to determine whether tropical forests will continue to experience compositional changes that may alter forest structure and ecosystem function.

     
    more » « less