skip to main content

Search for: All records

Creators/Authors contains: "Compson, Zacchaeus G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    DNA‐based aquatic biomonitoring methods show promise to provide rapid, standardized, and efficient biodiversity assessment to supplement and in some cases replace current morphology‐based approaches that are often less efficient and can produce inconsistent results. Despite this potential, broad‐scale adoption of DNA‐based approaches by end‐users remains limited, and studies on how these two approaches differ in detecting aquatic biodiversity across large spatial scales are lacking. Here, we present a comparison of DNA metabarcoding and morphological identification, leveraging national‐scale, open‐source, ecological datasets from the National Ecological Observatory Network (NEON). Across 24 wadeable streams in North America with 179 paired sample comparisons, we found that DNA metabarcoding detected twice as many unique taxa than morphological identification overall. The two approaches showed poor congruence in detecting the same taxa, averaging 59%, 35%, and 23% of shared taxa detected at the order, family, and genus levels, respectively. Importantly, the two approaches detected different proportions of indicator taxa like %EPT and %Chironomidae. DNA metabarcoding detected far fewer Chironomid and Trichopteran taxa than morphological identification, but more Ephemeropteran and Plecopteran taxa, a result likely due to primer choice. Overall, our results showed that DNA metabarcoding and morphological identification detected different benthic macroinvertebrate communities. Despite these differences, we found that the same environmental variables were correlated with invertebrate community structure, suggesting that both approaches can accurately detect biodiversity patterns across environmental gradients. Further refinement of DNA metabarcoding protocols, primers, and reference libraries–as well as more standardized, large‐scale comparative studies–may improve our understanding of the taxonomic agreement and data linkages between DNA metabarcoding and morphological approaches.

    more » « less
  2. null (Ed.)
  3. Abstract

    Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.

    more » « less