- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Conley, Andrew (2)
-
Acosta, Mario (1)
-
Arellano, Avelino F. (1)
-
Aumont, Bernard (1)
-
Barsanti, Kelley C. (1)
-
Barth, Mary C. (1)
-
Brasseur, Guy P. (1)
-
Curtis, Jeffrey H. (1)
-
Dabdub, Donald (1)
-
Davis, Nicholas A. (1)
-
Dawson, Matthew L. (1)
-
Eastham, Sebastian D. (1)
-
Emmons, Louisa K. (1)
-
Fast, Jerome D. (1)
-
Fiore, Arlene M. (1)
-
Gaubert, Benjamin (1)
-
Goldhaber, Steve (1)
-
Granier, Claire (1)
-
Grell, Georg A. (1)
-
Guevara, Marc (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. A flexible treatment for gas- and aerosol-phase chemical processes has been developed for models of diverse scale, from box models up to global models. At the core of this novel framework is an “abstracted aerosol representation” that allows a given chemical mechanism to be solved in atmospheric models with different aerosol representations (e.g., sectional, modal, or particle-resolved). This is accomplished by treating aerosols as a collection of condensed phases that are implemented according to the aerosol representation of the host model. The framework also allows multiple chemical processes (e.g., gas- and aerosol-phase chemical reactions, emissions, deposition, photolysis, and mass transfer) to be solved simultaneously as a single system. The flexibility of the model is achieved by (1) using an object-oriented design that facilitates extensibility to new types of chemical processes and to new ways of representing aerosol systems, (2) runtime model configuration using JSON input files that permits making changes to any part of the chemical mechanism without recompiling the model (this widely used, human-readable format allows entire gas- and aerosol-phase chemical mechanisms to be described with as much complexity as necessary), and (3) automated comprehensive testing that ensures stability of the code as new functionality is introduced.Together, these design choices enable users to build a customized multiphase mechanism without having to handle preprocessors, solvers, or compilers. Removing these hurdles makes this type of modeling accessible to a much wider community, including modelers, experimentalists, and educators.This new treatment compiles as a stand-alone library and has been deployed in the particle-resolved PartMC model and in the Multiscale Online AtmospheRe CHemistry (MONARCH) chemical weather prediction system for use at regional and global scales. Results from the initial deployment to box models of different complexity and MONARCH will be discussed, along with future extension to more complex gas–aerosol systems and the integration of GPU-based solvers.more » « less
-
Pfister, Gabriele G.; Eastham, Sebastian D.; Arellano, Avelino F.; Aumont, Bernard; Barsanti, Kelley C.; Barth, Mary C.; Conley, Andrew; Davis, Nicholas A.; Emmons, Louisa K.; Fast, Jerome D.; et al (, Bulletin of the American Meteorological Society)null (Ed.)ABSTRACT To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.more » « less
An official website of the United States government
