skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cook, Elizabeth M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wang, Yuyan (Ed.)
    Urban street trees offer cities critical environmental and social benefits. In New York City (NYC), a decadal census of every street tree is conducted to help understand and manage the urban forest. However, it has previously been impossible to analyze growth of an individual tree because of uncertainty in tree location. This study overcomes this limitation using a three-step alignment process for identifying individual trees with ZIP Codes, address, and species instead of map coordinates. We estimated individual growth rates for 126,362 street trees (59 species and 19% of 2015 trees) using the difference between diameter at breast height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was verified by locating and measuring the DBH of select trees and measuring a set of trees annually for over 5 years. We examined determinants of tree growth rates and explored their spatial distribution. In our newly created NYC tree growth database, fourteen species have over 1000 unique trees. The three most abundant tree species vary in growth rates; London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n = 15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that incorporated biological factors including size and the local urban form indicated that species was the major factor controlling growth rates, and tree stewardship had only a small effect. Furthermore, tree measurements by volunteer community scientists were as accurate as those made by NYC staff. Examining city wide patterns of tree growth indicates that areas with a higher Social Vulnerability Index have higher than expected growth rates. Continued efforts in street tree planting should utilize known growth rates while incorporating community voices to better provide long-term ecosystem services across NYC. 
    more » « less
    Free, publicly-accessible full text available July 11, 2025
  2. Flooding occurs at different scales and unevenly affects urban populations based on the broader social, ecological, and technological system (SETS) characteristics particular to cities. As hydrological models improve in spatial scale and account for more mechanisms of flooding, there is a continuous need to examine the re- lationships between flood exposure and SETS drivers of flood vulnerability. In this study, we related fine-scale measures of future flood exposure—the First Street Foundation’s Flood Factor and estimated change in chance of extreme flood exposure—to SETS indicators like building age, poverty, and historical redlining, at the parcel and census block group (CBG) scales in Portland, OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA. We used standard regression models and accounted for spatial bias in relationships. The results show that flood exposure was more often correlated with SETS variables at the parcel scale than at the CBG scale, indicating scale dependence. However, these relationships were often inconsistent among cities, indicating place-dependence. We found that marginalized populations were significantly more exposed to future flooding at the CBG scale. Combining newly-available, high-resolution future flood risk estimates with SETS data available at multiple scales offers cities a new set of tools to assess the exposure and multi-dimensional vulnerability of populations. These tools will better equip city managers to proactively plan and implement equitable interventions to meet evolving hazard exposure. 
    more » « less
  3. Abstract Cities need to take swift action to deal with the impacts of extreme climate events. The co-production of positive visions offers the potential to not only imagine but also intervene in guiding change toward more desirable urban futures. While participatory visioning continues to be used as a tool for urban planning, there needs to be a way of comparing and evaluating future visions so that they can inform decision-making. Traditional tools for comparison tend to favor quantitative modeling, which is limited in its ability to capture nuances or normative elements of visions. In this paper, we offer a qualitative method to assess the resilience, equity, and sustainability of future urban visions and demonstrate its use by applying it to 11 visions from Phoenix, AZ. The visions were co-produced at two different governance scales: five visions were created at the village (or borough) scale, and six visions were created at the regional (or metropolitan) scale. Our analysis reveals different emphases in the mechanisms present in the visions to advance resilience, sustainability, and equity. In particular, we note that regional future visions align with a green sustainability agenda, whereas village visions focus on social issues and emphasize equity-driven approaches. The visions have implications for future trajectories, and the priorities that manifest at the two scales speak of the political nature of visioning and the need to explore how these processes may interact in complementary, synergistic, or antagonistic ways. 
    more » « less
  4. Introduction Integrated social and ecological processes shape urban plant communities, but the temporal dynamics and potential for change in these managed communities have rarely been explored. In residential yards, which cover about 40% of urban land area, individuals make decisions that control vegetation outcomes. These decisions may lead to relatively static plant composition and structure, as residents seek to expend little effort to maintain stable landscapes. Alternatively, residents may actively modify plant communities to meet their preferences or address perceived problems, or they may passively allow them to change. In this research, we ask, how and to what extent does residential yard vegetation change over time? Methods We conducted co-located ecological surveys of yards (in 2008, 2018, and 2019) and social surveys of residents (in 2018) in four diverse neighborhoods of Phoenix, Arizona. Results 94% of residents had made some changes to their front or back yards since moving in. On average, about 60% of woody vegetation per yard changed between 2008 and 2018, though the number of species present did not differ significantly. In comparison, about 30% of woody vegetation changed in native Sonoran Desert reference areas over 10 years. In yards, about 15% of woody vegetation changed on average in a single year, with up to 90% change in some yards. Greater turnover was observed for homes that were sold, indicating a “pulse” of management. Additionally, we observed greater vegetation turnover in the two older, lawn-dominated neighborhoods surveyed despite differences in neighborhood socioeconomic factors. Discussion These results indicate that residential plant communities are dynamic over time. Neighborhood age and other characteristics may be important drivers of change, while socioeconomic status neither promotes nor inhibits change at the neighborhood scale. Our findings highlight an opportunity for management interventions, wherein residents may be open to making conservation-friendly changes if they are already altering the composition of their yards. 
    more » « less
  5. Abstract Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS. 
    more » « less
  6. The COVID-19 pandemic has demonstrated how the accessibility of greenspace can shift in response to social-ecological disturbance, and generated questions as to how changing dimensions of accessibility affect the ecosystem services of greenspace, such as improved subjective well-being. Amidst the growing consensus of the important role of greenspace in improving and maintaining well-being through times of duress, we examine how access to greenspace is affecting subjective well-being during the COVID-19 pandemic. Both the relationship of greenspace to subjective well-being and the barriers to greenspace access are well-established for normal conditions. Much remains to be known, however, about how barriers to access and the effect of greenspace on subjective well-being shift in response to periods of social duress, such as the current COVID-19 pandemic. Using data from surveys and interviews conducted with 1,200 university students in the United States during the spring of 2020, we assess the effect of going outdoors on subjective well-being, commonly experienced barriers to going outside, and how these barriers in turn affected subjective well-being. We find that time spent outside, particularly in greenspace, correlates with higher levels of subjective well-being, and that concern over COVID-19 risk and transmission negatively affects this relationship both in reducing time spent outdoors and the subjective well-being benefits. We also find that type of greenspace (public vs. private) does not have a significant effect on subjective well-being, that while those in areas with lower population density have significantly higher subjective well-being when outdoors, all participants experience a statistically equal benefit to subjective well-being by going outside. Our findings suggest how understanding the ways dimensions of accessibility shift in response to times of social duress can aid public health messaging, the design and management of greenspace, and environmental justice efforts to support the use of greenspace in improving and maintaining subjective well-being during future crisis events. 
    more » « less