Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bartholomay, Lyric C. (Ed.)Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti –a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.more » « less
-
Abstract Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant,
Sarracenia purpurea , offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito,Wyeomyia smithii , in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population ofS. purpurea pitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem. -
Abstract Background Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes.
Results Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (
Culex quinquefasciatus toAedes aegypti ) and within (Ae. aegypti toAe. aegypti ) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults.Conclusions This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions.
-
Abstract Background The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (
Wyeomyia smithii ), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker ofW. smithii as a ‘keystone predator’, very little is known about microbiota acquisition and assembly inW. smithii mosquitoes or the impacts ofW. smithii -microbiota interactions on mosquito and/or plant fitness.Results In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derived
W. smithii larvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across theW. smithii life cycle. Methods were also developed to produce axenic (microbiota-free)W. smithii larvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity inW. smithii larvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adultW. smithii mosquitoes. We also demonstrate the successful generation of axenicW. smithii larvae and report variable fitness outcomes in gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field.Conclusions This study provides the first information on microbiota acquisition and assembly in
W. smithii mosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand howW. smithii -microbiota interactions shape the structure and stability of this important model ecosystem. -
Young, Vincent B. (Ed.)ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “microbiota”) and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.more » « less
-
Abstract The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host–microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host–microbe interactions in mosquitoes.
-
Abstract Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito–microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required.
-
null (Ed.)Most species of mosquitoes are detritivores that feed on decaying plant and animal materials in their aquatic environment. Studies of several detritivorous mosquito species indicate that they host relatively low diversity communities of microbes that are acquired from the environment while feeding. Our recent results also indicate that detritivorous species normally require a living gut microbiota to grow beyond the first instar. Less well known is that some mosquitoes, including those belonging to the genus Toxorhynchites , are predators that feed on other species of mosquitoes and nektonic prey. In this study, we asked whether predaceous Toxorhynchites amboinensis larvae still require living microbes in their gut in order to develop. Using the detritivorous mosquito Aedes aegypti as prey, we found that T. amboinensis larvae harbour bacterial communities that are highly similar to that of their prey. Functional assays showed that T. amboinensis first instars provided axenic (i.e. bacteria-free) prey failed to develop, while two bacterial species present in gnotobiotic (i.e. colonized by one or more known bacterial species) prey successfully colonized the T. amboinensis gut and rescued development. Axenic T. amboinensis larvae also displayed defects in growth consistent with previously identified roles for microbe-mediated gut hypoxia in nutrient acquisition and assimilation in A. aegypti. Collectively, these results support a conserved role for gut microbes in regulating the development of mosquitoes with different feeding strategies.more » « less