skip to main content

Search for: All records

Creators/Authors contains: "Cooper, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The CREATE Supervisory Controls and Data Acquisition (SCADA) project is an industry driven initiative brought about by three colleges, working with an industry utility partner. The project began in July 2019 with the goal of integrating 21st century SCADA technology into existing energy education programs. The project delivered both in-person and online faculty professional development for 28 faculty representing 17 U.S. states. Products produced and distributed through the project network include a SCADA job task analysis, curriculum modules, control board trainers and lab activities, computer-based labs, and a web based open-source SCADA platform. The SCADA open-source platform allows colleges to connect their renewable energy generating systems and provide analytical training to their students using their own data, along with data from other regions and simulation sets. This resource will foster student engagement and ownership of learning through generation, visualization, and analysis of long term and large data sets. This study demonstrates the value of collaboration between multiple academic institutions, and how educational programs can benefit from collaboration with industry partners.
  2. Kneifel, Stefan (Ed.)
    Observations collected during the 25-February-2020 deployment of the Vapor In-Cloud Profiling Radar at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research, something that until now was only discussed in theory. The field experiment, which coordinated an X-, Ka, W- and G-band radar, revealed that the Ka-G pairing can generate differential reflectivity signal several decibels larger than the traditional Ka-W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes. The observations also showed that G-band signals experience non-Rayleigh scattering in regions where Ka- and W-band signal don’t, thus demonstrating the potential of G-band radars for sizing sub-millimeter ice crystals and droplets. Observed peculiar radar reflectivity patterns also suggest that G-band radars could be used to gain insight into the melting behavior of small ice crystals. G-band signal interpretation is challenging because attenuation and non-Rayleigh effects are typically intertwined. An ideal liquid-free period allowed us to use triple frequency Ka-W-G observations to test existing ice scattering libraries and the results raise questions on their comprehensiveness. Overall, this work reinforces the importance of deploying radars with 1) sensitivity sufficient to detect small Rayleigh scatters at cloud topmore »in order to derive estimates of path integrated hydrometeor attenuation, a key constraint for microphysical retrievals, 2) sensitivity sufficient to overcome liquid attenuation, to reveal the larger differential signals generated from using G-band as part of a multifrequency deployment, and 3) capable of monitoring atmospheric gases to reduce related uncertainty« less
  3. Leveraging protein-protein interaction networks to identify groups of proteins and their common functionality is an important problem in bioinformatics. Systems-level analysis of protein-protein interactions is made possible through network science and modeling of high-throughput data. From these analyses, small protein complexes are traditionally represented graphically as complete graphs or dense clusters of nodes. However, there are certain graph theoretic properties that have not been extensively studied in PPI networks, especially as they pertain to cluster discovery, such as planarity. Planarity of graphs have been used to reflect the physical constraints of real-world systems outside of bioinformatics, in areas such as mapping and imaging. Here, we investigate the planarity property in network models of protein complexes. We hypothesize that complexes represented as PPI subgraphs will tend to be planar, reflecting the actual physical interface and limits of components in the complex. When testing the planarity of known complex subgraphs in S. cerevisiae and selected mammalian PPIs, we find that a majority of validated complexes possess this planar property. We discuss the biological motivation of planar versus nonplanar subgraphs, observing that planar subgraphs tend to have longer protein components. Functional classification of planar versus nonplanar complex subgraphs reveals differences in annotation ofmore »these groups relating to cellular component organization, structural molecule activity, catalytic activity, and nucleic acid binding. These results provide a new quantitative and biologically motivated measure of real protein complexes in the network model, important for the development of future complex-finding algorithms in PPIs. Accounting for this property paves the way to new means for discovering new protein complexes and uncovering the functionality of unknown or novel proteins. s« less
  4. Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.