skip to main content


Search for: All records

Creators/Authors contains: "Cope, Olivia L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal,Annu. Rev. Plant Biol., 68, 513–534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth–defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipolliniet al.,Annual Plant Reviews(Wiley, 2014), pp. 263–307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth–defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequent ecological interactions [Brunneret al.,Funct. Ecol.33, 7–12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.

     
    more » « less
  2. Abstract

    Extreme heat events are becoming more frequent and intense as climate variability increases, and these events inherently vary in their timing. We predicted that the timing of a heat wave would determine its consequences for insect communities owing to temporal variation in the susceptibility of host plants to heat stress. We subjected common milkweed (Asclepias syriaca) plants to in‐field experimental heat waves to investigate how the timing of heat waves, both seasonally and relative to a biotic stressor (experimental herbivory), affected their ecological consequences. We found that heat waves had multiyear, timing‐specific effects on plant–insect communities. Early‐season heat waves led to greater and more persistent effects on plants and herbivore communities than late‐season heat waves. Heat waves following experimental herbivory had reduced consequences. Our results show that extreme climate events can have complex, lasting ecological effects beyond the year of the event—and that timing is key to understanding those effects.

     
    more » « less
  3. Summary

    The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high‐competition environments. Plant genotypes adjust their functional trait expression under high levels of competition, which may help explain intra‐specific variation in competitive response. However, the relationships between traits and competitive response are not well understood, especially in trees. In this study, we investigated among‐genotype associations between tree trait plasticity and competitive response.

    We manipulated competition intensity in experimental stands of trembling aspen (Populus tremuloides) to address the covariance between competition‐induced changes in functional trait expression and aspects of competitive ability at the genotype level.

    Genotypic variation in the direction and magnitude of functional trait responses, especially those of crown foliar mass, phytochemistry, and leaf physiology, was associated with genotypic variation in competitive response. Traits exhibited distinct plastic responses to competition, with varying degrees of genotypic variation and covariance with other trait responses.

    The combination of genotypic diversity and covariance among functional traits led to tree responses to competition that were coordinated among traits yet variable among genotypes. Such relationships between tree traits and competitive success have the potential to shape stand‐level trait distributions over space and time.

     
    more » « less
  4. Abstract

    Expression of herbivore defense traits can change dramatically during the course of plant development. Little is known, however, about the degree of genetic or sexual variation in these ontogenetic defense trajectories or whether the trajectories themselves are adaptive, especially in long‐lived species.

    We used a 13‐year dataset of chemical defense traits, growth and survivorship from a common garden of trembling aspen (Populus tremuloides) genotypes to document long‐term defense trajectories and their relationship to tree fitness during juvenile and early mature stages.

    Overall, concentrations of the two principal classes of aspen defense compounds (salicinoid phenolic glycosides [SPGs] and condensed tannins [CTs]) decreased to differing degrees in foliage of juvenile trees and then remained relatively constant in maturity. Initial values, juvenile rates of change and average mature values all exhibited significant genetic variation for both SPGs and CTs.

    Relationships between defense trajectory parameters and metrics of tree fitness (growth and survivorship) depended on compound type and tree sex. Females with higher‐allocation SPG trajectories (high initial juvenile concentrations, slow juvenile declines, high mature concentrations) grew more slowly relative to females with lower‐allocation trajectories. In males, higher‐allocation SPG trajectories had a lesser effect on growth but were associated with reduced mortality. Juvenile CT trajectories were not correlated with tree fitness, but average CT concentration in maturity was positively related to growth in females.

    These results suggest that ontogenetic defense trajectories are adaptive and subject to natural selection. Genotypic variation and ontogeny shape tree defensive chemistry, both independently and interactively. These patterns of defense expression have the potential to structure trophic interactions and the genetic composition of forests in both space and time.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less