Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Geologic reconstructions of overwash events can extend storm records beyond the brief instrumental record. However, the return periods of storms calculated from geologic records alone may underestimate the frequency of events given the preservation bias of geologic records. Here, we compare a geologic reconstruction of storm activity from a salt marsh in New Jersey to two neighboring instrumental records at the Sandy Hook and Battery tide gauges. Eight overwash deposits were identified within the marsh's stratigraphy by their fan‐shaped morphology and coarser mean grain size (3.6 ± 0.7 φ) compared to autochthonous sediments they were embedded in (5.6 ± 0.8 φ). We used an age–depth model based on modern chronohorizons and three radiocarbon dates to provide age constraints for the overwash deposits. Seven of the overwash deposits were attributed to historical storms, including the youngest overwash deposit from Hurricane Sandy in 2012. The four youngest overwash deposits overlap with instrumental records. In contrast, the Sandy Hook and Battery tide gauges recorded eight and 11 extreme water levels above the 10% annual expected probability (AEP) of exceedance level, respectively, between 1932/1920 and the present. The geologic record in northern New Jersey, therefore, has a 36–50% preservation potential of capturing extreme water levels above the 10% AEP level.more » « less
-
null (Ed.)Abstract Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0–2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr −1 ). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between −0.3 and 0.4 mm yr −1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr −1 .more » « less
An official website of the United States government
