skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Corbett, Eamon C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under‐studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non‐avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad‐scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait. 
    more » « less
  2. Abstract South American dry forests have a complex and poorly understood biogeographic history. Based on the fragmented distribution of many Neotropical dry forest species, it has been suggested that this biome was more widely distributed and contiguous under drier climate conditions in the Pleistocene. To test this scenario, known as the Pleistocene Arc Hypothesis, we studied the phylogeography of the Rufous‐fronted Thornbird (Phacellodomus rufifrons), a widespread dry forest bird with a disjunct distribution closely matching that of the biome itself. We sequenced mtDNA and used ddRADseq to sample 7,167 genome‐wide single‐nucleotide polymorphisms from 74P. rufifronsindividuals across its range. We found low genetic differentiation over two prominent geographic breaks — particularly across a 1,000 km gap between populations in Bolivia and Northern Peru. Using demographic analyses of the joint site frequency spectrum, we found evidence of recent divergence without subsequent gene flow across those breaks. By contrast, parapatric morphologically distinct populations in northeastern Brazil show high genetic divergence with evidence of recent gene flow. These results, in combination with our paleoclimate species distribution modelling, support the idea that currently disjunct patches of dry forest were more connected in the recent past, probably during the Middle and Late Pleistocene. This notion fits the major predictions of the Pleistocene Arc Hypothesis and illustrates the importance of comprehensive genomic and geographic sampling for examining biogeographic and evolutionary questions in complex ecosystems like Neotropical dry forests. 
    more » « less