skip to main content

Search for: All records

Creators/Authors contains: "Corley, K. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2022
  2. ABSTRACT

    The recent discovery of TeV emission from gamma-ray bursts (GRBs) by the MAGIC and H.E.S.S. Cherenkov telescopes confirmed that emission from these transients can extend to very high energies. The TeV energy domain reaches the most sensitive band of the Cherenkov Telescope Array (CTA). This newly anticipated, improved sensitivity will enhance the prospects of gravitational-wave follow-up observations by CTA to probe particle acceleration and high-energy emission from binary black hole and neutron star mergers, and stellar core-collapse events. Here we discuss the implications of TeV emission on the most promising strategies of choice for the gravitational-wave follow-up effort formore »CTA and Cherenkov telescopes more broadly. We find that TeV emission (i) may allow more than an hour of delay between the gravitational-wave event and the start of CTA observations; (ii) enables the use of CTA’s small size telescopes that have the largest field of view. We characterize the number of pointings needed to find a counterpart. (iii) We compute the annual follow-up time requirements and find that prioritization will be needed. (iv) Even a few telescopes could detect sufficiently nearby counterparts, raising the possibility of adding a handful of small-sized or medium-sized telescopes to the network at diverse geographic locations. (v) The continued operation of VERITAS/H.E.S.S./MAGIC would be a useful compliment to CTA’s follow-up capabilities by increasing the sky area that can be rapidly covered, especially in the United States and Australia, in which the present network of gravitational-wave detectors is more sensitive.

    « less
  3. Free, publicly-accessible full text available September 1, 2022
  4. null (Ed.)
  5. Free, publicly-accessible full text available May 1, 2023
  6. Free, publicly-accessible full text available April 1, 2023
  7. Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds nomore »evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.« less
    Free, publicly-accessible full text available April 1, 2023