Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Falush, Daniel (Ed.)Abstract Species are a fundamental unit of biodiversity. Yet, the existence of clear species boundaries among bacteria has long been a subject of debate. Here, we studied species boundaries in the context of the phylogenetic history of Nostoc, a widespread genus of photoautotrophic and nitrogen-fixing cyanobacteria that includes many lineages that form symbiotic associations with plants (e.g. cycads and bryophytes) and fungi (e.g. cyanolichens). We found that the evolution of Nostoc was characterized by eight rapid radiations, many of which were associated with major events in the evolution of plants. In addition, incomplete lineage sorting associated with these rapid radiations outweighed reticulations during Nostoc evolution. We then show that the pattern of diversification of Nostoc shapes the distribution of average nucleotide identities (ANIs) into a complex mosaic, wherein some closely related clades are clearly isolated from each other by gaps in genomic similarity, while others form a continuum where genomic species boundaries are expected. Nevertheless, recently diverged Nostoc lineages often form cohesive clades that are maintained by within-clade gene flow. Boundaries to homologous recombination between these cohesive clades persist even when the potential for gene flow is high, i.e. when closely related clades of Nostoc co-occur or are locally found in symbiotic associations with the same lichen-forming fungal species. Our results demonstrate that rapid radiations are major contributors to the complex speciation history of Nostoc. This underscores the need to consider evolutionary information beyond thresholds of genomic similarity to delimit biologically meaningful units of biodiversity for bacteria.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Abstract Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.]more » « less
An official website of the United States government
