Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea‐ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under‐ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immatureB. saidaand the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth ofB. saidain this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immatureB. saidamay be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival ofB. saidawill not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Abundance (ind. m-3) of zooplankton taxa was calculated from samples of Polarstern cruise PS122 (MOSAiC). Samples were taken with a Ring net with an opening area of 0.79 m2 and a mesh size of 1000 µm. Samples were analysed via image-based ZooScan analysis. The classified images are available at the web application EcoTaxa: https://ecotaxa.obs-vlfr.fr/prj/9966.more » « less
-
null (Ed.)An accurate identification of species and communities is a prerequisite for analysing and recording biodiversity and community shifts. In the context of marine biodiversity conservation and management, this review outlines past, present and forward-looking perspectives on identifying and recording planktonic diversity by illustrating the transition from traditional species identification based on morphological diagnostic characters to full molecular genetic identification of marine assemblages. In this process, the article presents the methodological advancements by discussing progress and critical aspects of the crossover from traditional to novel and future molecular genetic identifications and it outlines the advantages of integrative approaches using the strengths of both morphological and molecular techniques to identify species and assemblages. We demonstrate this process of identifying and recording marine biodiversity on pelagic copepods as model taxon. Copepods are known for their high taxonomic and ecological diversity and comprise a huge variety of behaviours, forms and life histories, making them a highly interesting and well-studied group in terms of biodiversity and ecosystem functioning. Furthermore, their short life cycles and rapid responses to changing environments make them good indicators and core research components for ecosystem health and status in the light of environmental change. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.more » « less
-
Abstract. In marine ecosystems, most physiological, ecological, or physical processes are size dependent. These include metabolic rates, the uptake of carbon and other nutrients, swimming and sinking velocities, and trophic interactions, which eventually determine the stocks of commercial species, as well as biogeochemical cycles and carbon sequestration. As such, broad-scale observations of plankton size distribution are important indicators of the general functioning and state of pelagic ecosystems under anthropogenic pressures. Here, we present the first global datasets of the Pelagic Size Structure database (PSSdb), generated from plankton imaging devices. This release includes the bulk particle normalized biovolume size spectrum (NBSS) and the bulk particle size distribution (PSD), along with their related parameters (slope, intercept, and R2) measured within the epipelagic layer (0–200 m) by three imaging sensors: the Imaging FlowCytobot (IFCB), the Underwater Vision Profiler (UVP), and benchtop scanners. Collectively, these instruments effectively image organisms and detrital material in the 7–10 000 µm size range. A total of 92 472 IFCB samples, 3068 UVP profiles, and 2411 scans passed our quality control and were standardized to produce consistent instrument-specific size spectra averaged to 1° × 1° latitude and longitude and by year and month. Our instrument-specific datasets span most major ocean basins, except for the IFCB datasets we have ingested, which were exclusively collected in northern latitudes, and cover decadal time periods (2013–2022 for IFCB, 2008–2021 for UVP, and 1996–2022 for scanners), allowing for a further assessment of the pelagic size spectrum in space and time. The datasets that constitute PSSdb's first release are available at https://doi.org/10.5281/zenodo.11050013 (Dugenne et al., 2024b). In addition, future updates to these data products can be accessed at https://doi.org/10.5281/zenodo.7998799.more » « less
-
Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.more » « less
-
The international and interdisciplinary sea-ice drift expedition “The Multidisciplinary drifting Observatory for the Study of Arctic Climate” (MOSAiC) was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical, and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles, and linkages to the environment. In addition to the measurements of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution in specific time windows. A wide range of sampling instruments and approaches, including sea-ice coring, lead sampling with pumps, rosette-based water sampling, plankton nets, remotely operated vehicles, and acoustic buoys, was applied to address the science objectives. Further, a broad range of process-related measurements to address, for example, productivity patterns, seasonal migrations, and diversity shifts, were made both in situ and onboard RV Polarstern. This article provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of habitat- or process-specific sampling. The initial results presented include high biological activities in wintertime and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years.more » « less