Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The heaviest elements in the universe are synthesized through rapid neutron capture ( r -process) in extremely neutron-rich outflows. Neutron star mergers were established as an important r -process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints on r -process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forging r -process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsar r -process contribution of ≲0.2 M ⊙ for GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tensionmore »Free, publicly-accessible full text available July 1, 2023
-
Free, publicly-accessible full text available June 1, 2023
-
ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of ${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$, we can rule out very energetic merger ejecta ${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$, thus excluding the presence of a powerful magnetar as a merger remnant.
-
Abstract We present the full panchromatic afterglow light-curve data of GW170817, including new radio data as well as archival optical and X-ray data, between 0.5 and 940 days post-merger. By compiling all archival data and reprocessing a subset of it, we have evaluated the impact of differences in data processing or flux determination methods used by different groups and attempted to mitigate these differences to provide a more uniform data set. Simple power-law fits to the uniform afterglow light curve indicate a t 0.86±0.04 rise, a t −1.92±0.12 decline, and a peak occurring at 155 ± 4 days. The afterglow is optically thin throughout its evolution, consistent with a single spectral index (−0.584 ± 0.002) across all epochs. This gives a precise and updated estimate of the electron power-law index, p = 2.168 ± 0.004. By studying the diffuse X-ray emission from the host galaxy, we place a conservative upper limit on the hot ionized interstellar medium density, <0.01 cm −3 , consistent with previous afterglow studies. Using the late-time afterglow data we rule out any long-lived neutron star remnant having a magnetic field strength between 10 10.4 and 10 16 G. Our fits to the afterglow data using anmore »