skip to main content

Search for: All records

Creators/Authors contains: "Cortes, Paulo C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS) Band 6 scan (212–272 GHz) covers potential [C ii ] emission in galaxies at 6 ≤ z ≤ 8 throughout a 2.9 arcmin 2 area. By selecting on known Ly α emitters (LAEs) and photometric dropout galaxies in the field, we perform targeted searches down to a 5 σ [C ii ] luminosity depth L [C II ] ∼ 2.0 × 10 8 L ⊙ , corresponding roughly to star formation rates (SFRs) of 10–20 M ⊙ yr −1 when applying a locally calibrated conversion for star-forming galaxies, yielding zero detections. While the majority of galaxies in this sample are characterized by lower SFRs, the resulting upper limits on [C ii ] luminosity in these sources are consistent with the current literature sample of targeted ALMA observations of z = 6–7 LAEs and Lyman-break galaxies (LBGs), as well as the locally calibrated relations between L [C ii ] and SFR—with the exception of a single [C ii ]-deficient, UV-luminous LBG. We also perform a blind search for [C ii ]-bright galaxies that may have been missed by optical selections, resulting in an upper limitmore »on the cumulative number density of [C ii ] sources with L [C II ] > 2.0 × 10 8 L ⊙ (5 σ ) to be less than 1.8 × 10 −4 Mpc −3 (90% confidence level). At this luminosity depth and volume coverage, we present an observed evolution of the [C ii ] luminosity function from z = 6–8 to z ∼ 0 by comparing the ASPECS measurement to literature results at lower redshift.« less
  2. Abstract

    We characterize the accuracy of linear-polarization mosaics made using the Atacama Large Millimeter/submillimeter Array (ALMA). First, we observed the bright, highly linearly polarized blazar 3C 279 at Bands 3, 5, 6, and 7 (3 mm, 1.6 mm, 1.3 mm, and 0.87 mm, respectively). At each band, we measured the blazar’s polarization on an 11 × 11 grid of evenly spaced offset pointings covering the full-width at half-maximum (FWHM) area of the primary beam. After applying calibration solutions derived from the on-axis pointing of 3C 279 to all of the on- and off-axis data, we find that the residual polarization errors across the primary beam are similar at all frequencies: the residual errors in linear polarization fractionPfracand polarization position angleχare ≲0.001 (≲0.1% of StokesI) and ≲ 1° near the center of the primary beam; the errors increase to ∼0.003–0.005 (∼0.3%–0.5% of StokesI) and ∼1°–5° near the FWHM as a result of the asymmetric beam patterns in the (linearly polarized)QandUmaps. We see the expected double-lobed “beam squint” pattern in the circular polarization (StokesV) maps. Second, to test the polarization accuracy in a typical ALMA project, we performed observations of continuum linear polarization toward the Kleinmann–Low nebula in Orion (Orion-KL) using several mosaic patterns at Bands 3more »and 6. We show that after mosaicking, the residual off-axis errors decrease as a result of overlapping multiple pointings. Finally, we compare the ALMA mosaics with an archival 1.3 mm Combined Array for Research in Millimeter-wave Astronomy polarization mosaic of Orion-KL and find good consistency in the polarization patterns.

    « less