skip to main content


Search for: All records

Creators/Authors contains: "Cortez, Michael H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby increase the density of their prey. However, evidence for such predator‐driven reductions in the prevalence of prey remains mixed. Furthermore, even less evidence supports increases in prey density during epidemics. Here, we used a planktonic predator–prey–parasite system to experimentally test the healthy herds hypothesis. We manipulated density of a predator (the phantom midge,Chaoborus punctipennis) and parasitism (the virulent fungusMetschnikowia bicuspidata) in experimental assemblages. Because we know natural populations of the prey (Daphnia dentifera) vary in susceptibility to both predator and parasite, we stocked experimental populations with nine genotypes spanning a broad range of susceptibility to both enemies. Predation significantly reduced infection prevalence, eliminating infection at the highest predation level. However, lower parasitism did not increase densities of prey; instead, prey density decreased substantially at the highest predation levels (a major density cost of healthy herds predation). This density result was predicted by a model parameterized for this system. The model specifies three conditions for predation to increase prey density during epidemics: (i) predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the system satisfied the first two conditions, prevalence remained too high to see an increase in prey density with predation. Low prey densities caused by high predation drove increases in algal resources of the prey, fueling greater reproduction, indicating that consumer–resource interactions can complicate predator–prey–parasite dynamics. Overall, in our experiment, predation reduced the prevalence of a virulent parasite but, at the highest levels, also reduced prey density. Hence, while healthy herds predation is possible under some conditions, our empirical results make it clear that the manipulation of predators to reduce parasite prevalence may harm prey density.

     
    more » « less
  3. null (Ed.)
    We develop a method to identify how ecological, evolutionary, and eco-evolutionary feedbacks influence system stability. We apply our method to nine empirically parametrized eco-evolutionary models of exploiter–victim systems from the literature and identify which particular feedbacks cause some systems to converge to a steady state or to exhibit sustained oscillations. We find that ecological feedbacks involving the interactions between all species and evolutionary and eco-evolutionary feedbacks involving only the interactions between exploiter species (predators or pathogens) are typically stabilizing. In contrast, evolutionary and eco-evolutionary feedbacks involving the interactions between victim species (prey or hosts) are destabilizing more often than not. We also find that while eco-evolutionary feedbacks rarely altered system stability from what would be predicted from just ecological and evolutionary feedbacks, eco-evolutionary feedbacks have the potential to alter system stability at faster or slower speeds of evolution. As the number of empirical studies demonstrating eco-evolutionary feedbacks increases, we can continue to apply these methods to determine whether the patterns we observe are common in other empirical communities. 
    more » « less