skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Corwin, Lisa A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Bee the CURE is a novel course-based undergraduate research experience (CURE) that engages introductory biology students in DNA barcoding (DNA extraction, amplification, and bioinformatics) in partnership with the Tucson Bee Collaborative and the University of Arizona. The first iteration of this CURE taught at Pima Community College (PCC) occurred during the Fall 2020 semester in which the course was taught online and students focused on bioinformatics. Due to the online format, students were unable to participate directly in the wet-lab components (extraction and amplification) of the course. These were approximated with videos of the instructor performing the tasks. A qualitative case study of this semester built from student interviews found that students were able to form positive relationships with instructors and peer mentors but that the online format of the class posed some challenges to relationship formation. Students reported developing self-efficacy in bioinformatics skills while online lab participation disrupted student’s gaining “hands-on experiences” and seldom led to development of science self-efficacy in wet lab skills. Our findings from a study of a synchronous online CURE allowed us to characterize a context in which online learning posed a challenge and perhaps even a threat to research self-efficacy, especially regarding skill development and self-efficacy in “hands-on” areas, such as wet-bench research skills. Yet optimistically, our study highlights the potential of online community college learning environments to provide mastery experiences in online science contexts (e.g., bioinformatics) and opportunities for relationship building.

    more » « less
  2. Nehm, Ross (Ed.)
    Civic engagement is an individual’s active participation that is intended to improve a community’s socioeconomic status or help shape its future. Undergraduates who engage with a community during formal course work are more likely to participate civically later in life. This outcome is important for science, technology, engineering and math (STEM) students since they use STEM knowledge to make informed decisions about public health, national security and the environment. STEM courses that incorporate this idea actively engage students in helping communities, and yet, assessment of the civic outcomes in these courses, such as measuring important predictors of future civic engagement, has been inconsistent and challenging. To address this need, we designed and assessed a new survey by adapting and testing items from previously existing civic engagement measures. The result was a 14-item survey comprising the following scientific civic constructs, that predict future scientific civic engagement: value, self-efficacy, action, and knowledge. This survey has potential to provide insight into the development of scientific civic engagement for STEM disciplines among undergraduate populations and can be used with additional scales of interest, allowing for researchers to assess relationships between predictors of scientific civic engagement and other constructs. 
    more » « less
  3. Andrews, Tessa C. (Ed.)
    In an effort to increase community college (CC) biology education research (BER), an NSF-funded network called CC Bio INSITES (Community College Biology Instructor Network to Support Inquiry into Teaching and Education Scholarship; INSITES for short) was developed to provide intellectual, resource, and social support for CC faculty (CCF) to conduct BER. To investigate the efficacy of this network, we asked about the barriers and supports INSITES CCF have experienced when conducting BER and how specific INSITES supports have mitigated barriers and provided support for network members to engage in BER. We conducted interviews and focus groups with 17 network participants, representing 15 different CCs. Qualitative thematic analysis revealed six main barriers that INSITES CCF experience when conducting BER: time constraints, knowledge, incentives or rewards, administrative or peer support, infrastructure, and stigma or misconceptions associated with being CCF. Participants indicated how the supports provided by INSITES helped to mitigate each barrier. Social support was especially critical for CCF to develop a sense of belonging to the CC BER community, though that did not extend to the broader BER community. We describe how these supports function to support BER and recommend four actions for future support of CCF conducting BER. 
    more » « less
  4. Shortlidge, Erin (Ed.)
    The ability to navigate scientific obstacles is widely recognized as a hallmark of a scientific disposition and is one predictor of science, technology, engineering, and mathematics persistence for early-career scientists. However, the development of this competency in undergraduate research has been largely underexplored. This study addresses this gap by examining introductory students’ emotional and behavioral responses to research-related challenges and failures that occur in two sequential research-based courses. We describe commonly reported emotions, coping responses, and perceived outcomes and examine relationships between these themes, student demographics, and course enrollment. Students commonly experience frustration, confusion, and disappointment when coping with challenges and failures. Yet the predominance of students report coping responses likely to be adaptive in academic contexts despite experiencing negative emotions. Being enrolled in the second course of a research-based course sequence was related to several shifts in response to challenges during data collection, including less reporting of confusion and fewer reports of learning to be cautious from students. Overall, students in both the first and second courses reported many positive outcomes indicating improvements in their ability to cope with challenge and failure. We assert that educators can improve research-based educational courses by scaffolding students’ research trials, failures, and iterations to support students’ perseverance. 
    more » « less
  5. Abstract Background

    As technology moves rapidly forward and our world becomes more interconnected, we are seeing increases in the complexity and challenge associated with scientific problems. More than ever before, scientists will need to be resilient and able to cope with challenges and failures en route to success. However, we still understand relatively little about how these skills manifest in STEM contexts broadly, and how they are developed by STEM undergraduate students. While recent studies have begun to explore this area, no measures exist that are specifically designed to assess coping behaviors in STEM undergraduate contexts at scale. Fortunately, multiple measures of coping do exist and have been previously used in more general contexts. Drawing strongly from items used in the COPE and Brief COPE, we gathered a pool of items anticipated to be good measures of undergraduate students’ coping behaviors in STEM. We tested the validity of these items for use with STEM students using exploratory factor analyses, confirmatory factor analyses, and cognitive interviews. In particular, our confirmatory factor analyses and cognitive interviews explored whether the items measured coping for persons excluded due to ethnicity or race (PEERs).


    Our analyses revealed two versions of what we call the STEM-COPE instrument that accurately measure several dimensions of coping for undergraduate STEM students. One version is more fine-grained. We call this the Coping Behaviors version, since it is more specific in its description of coping actions. The other contains some specific scales and two omnibus scales that describe what we call challenge-engaging and challenge-avoiding coping. This version is designated the Coping Styles version. We confirmed that both versions can be used reliably in PEER and non-PEER populations.


    The final products of our work are two versions of the STEM-COPE. Each version measures several dimensions of coping that can be used in individual classrooms or across contexts to assess STEM undergraduate students’ coping with challenges or failures. Each version can be used as a whole, or individual scales can be adopted and used for more specific studies. This work also highlights the need to either develop or adapt other existing measures for use with undergraduate STEM students, and more specifically, for use with sub-populations within STEM who have been historically marginalized or minoritized.

    more » « less
  6. Abstract Background The ability to navigate obstacles and embrace iteration following failure is a hallmark of a scientific disposition and is hypothesized to increase students’ persistence in science, technology, engineering, and mathematics (STEM). However, this ability is often not explicitly explored or addressed by STEM instructors. Recent collective interest brought together STEM instructors, psychologists, and education researchers through the National Science Foundation (NSF) research collaborative Factors affecting Learning, Attitudes, and Mindsets in Education network (FLAMEnet) to investigate intrapersonal elements (e.g., individual differences, affect, motivation) that may influence students’ STEM persistence. One such element is fear of failure (FF), a complex interplay of emotion and cognition occurring when a student believes they may not be able to meet the needs of an achievement context. A validated measure for assessing FF, the Performance Failure Appraisal Inventory (PFAI) exists in the psychological literature. However, this measure was validated in community, athletic, and general undergraduate samples, which may not accurately reflect the motivations, experiences, and diversity of undergraduate STEM students. Given the potential role of FF in STEM student persistence and motivation, we felt it important to determine if this measure accurately assessed FF for STEM undergraduates, and if not, how we could improve upon or adapt it for this purpose. Results Using exploratory and confirmatory factor analysis and cognitive interviews, we re-validated the PFAI with a sample of undergraduates enrolled in STEM courses, primarily introductory biology and chemistry. Results indicate that a modified 15-item four-factor structure is more appropriate for assessing levels of FF in STEM students, particularly among those from groups underrepresented in STEM. Conclusions In addition to presenting an alternate factor structure, our data suggest that using the original form of the PFAI measure may significantly misrepresent levels of FF in the STEM context. This paper details our collaborative validation process and discusses implications of the results for choosing, using, and interpreting psychological assessment tools within STEM undergraduate populations. 
    more » « less
  7. Understanding how students develop biology interests and the roles interest plays in biology contexts could help instructors and researchers to increase science, technology, engineering, and mathematics students’ motivation and persistence. However, it is currently unclear how interest has been defined or measured in the biology education research literature. We analyzed this body of literature to determine how interest has been defined and used by the biology education research community. Specifically, we determined the extent to which previously published work drew on theories that conceptualize interest. Further, we identified studies that measured student interest in biology and characterized the types of measures used. Our findings indicate that biology education researchers typically describe interest as a relationship involving positive feelings between an individual and a physical object, activity, or topic of focus. We also found that interest is often not defined, theories involving interest are not often consulted, and the most common measures of interest only assess a single aspect of the construct. On the basis of these results, we make suggestions for future research seeking to examine biology students’ interest. We hope that this analysis can serve as tool for biology educators to improve their own investigations of students’ interest and measure outcomes of interest-generating educational activities. 
    more » « less
  8. Navigating scientific challenges, persevering through difficulties, and coping with failure are considered hallmarks of a successful scientist. However, relatively few studies investigate how undergraduate science, technology, engineering, and mathematics (STEM) students develop these skills and dispositions or how instructors can facilitate this development in undergraduate STEM learning contexts. This is a critical gap, because the unique cultures and practices found in STEM classrooms are likely to influence how students approach challenges and deal with failures, both during their STEM education and in the years that follow. To guide research aimed at understanding how STEM students develop a challenge-engaging disposition and the ability to adaptively cope with failure, we generate a model representing hypotheses of how students might approach challenges and respond to failures in undergraduate STEM learning contexts. We draw from theory and studies investigating mindset, goal orientations, attributions, fear of failure, and coping to inform our model. We offer this model as a tool for the community to test, revise, elaborate, or refute. Finally, we urge researchers and educators to consider the development, implementation, and rigorous testing of interventions aimed at helping students develop a persevering and challenge-engaging disposition within STEM contexts. 
    more » « less