Understanding the genomic consequences of population decline is important for predicting species' vulnerability to intensifying global change. Empirical information about genomic changes in populations in the early stages of decline, especially for those still experiencing immigration, remains scarce. We used 7834 autosomal SNPs and demographic data for 288 Florida scrub jays (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Aphelocoma coerulescens ; FSJ) sampled in 2000 and 2008 to compare levels of genetic diversity, inbreeding, relatedness, and lengths of runs of homozygosity (ROH) between two subpopulations within dispersal distance of one another but have experienced contrasting demographic trajectories. At Archbold Biological Station (ABS), the FSJ population has been stable because of consistent habitat protection and management, while at nearby Placid Lakes Estates (PLE), the population declined precipitously due to suburban development. By the onset of our sampling in 2000, birds in PLE were already less heterozygous, more inbred, and on average more related than birds in ABS. No significant changes occurred in heterozygosity or inbreeding across the 8‐year sampling interval, but average relatedness among individuals decreased in PLE, thus by 2008 average relatedness did not differ between sites. PLE harbored a similar proportion of short ROH but a greater proportion of long ROH than ABS, suggesting one continuous population of shared demographic history in the past, which is now experiencing more recent inbreeding. These results broadly uphold the predictions of simple population genetic models based on inferred effective population sizes and rates of immigration. Our study highlights how, in just a few generations, formerly continuous populations can diverge in heterozygosity and levels of inbreeding with severe local population decline despite ongoing gene flow. -
A central goal of population genetics is to understand how genetic drift, natural selection, and gene flow shape allele frequencies through time. However, the actual processes underlying these changes—variation in individual survival, reproductive success, and movement—are often difficult to quantify. Fully understanding these processes requires the population pedigree, the set of relationships among all individuals in the population through time. Here, we use extensive pedigree and genomic information from a long-studied natural population of Florida Scrub-Jays (
Aphelocoma coerulescens ) to directly characterize the relative roles of different evolutionary processes in shaping patterns of genetic variation through time. We performed gene dropping simulations to estimate individual genetic contributions to the population and model drift on the known pedigree. We found that observed allele frequency changes are generally well predicted by accounting for the different genetic contributions of founders. Our results show that the genetic contribution of recent immigrants is substantial, with some large allele frequency shifts that otherwise may have been attributed to selection actually due to gene flow. We identified a few SNPs under directional short-term selection after appropriately accounting for gene flow. Using models that account for changes in population size, we partitioned the proportion of variance in allele frequency change through time. Observed allele frequency changes are primarily due to variation in survival and reproductive success, with gene flow making a smaller contribution. This study provides one of the most complete descriptions of short-term evolutionary change in allele frequencies in a natural population to date.