skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Costa, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present chemical abundances for 21 elements (from Li to Eu) in 150 metal-poor Galactic stars spanning −4.1 < [Fe/H] < −2.1. The targets were selected from the SkyMapper survey and include 90 objects with [Fe/H] ≤ −3 of which some 15 have [Fe/H] ≤ −3.5. When combining the sample with our previous studies, we find that the metallicity distribution function has a power-law slope of Δ(log N)/Δ[Fe/H] = 1.51 ± 0.01 dex per dex over the range −4 ≤ [Fe/H] ≤ −3. With only seven carbon-enhanced metal-poor stars in the sample, we again find that the selection of metal-poor stars based on SkyMapper filters is biased against highly carbon-rich stars for [Fe/H] > −3.5. Of the 20 objects for which we could measure nitrogen, 11 are nitrogen-enhanced metal-poor (NEMP) stars. Within our sample, the high NEMP fraction (55 per cent ± 21 per cent) is compatible with the upper range of predicted values (between 12 per cent and 35 per cent). The chemical abundance ratios [X/Fe] versus [Fe/H] exhibit similar trends to previous studies of metal-poor stars and Galactic chemical evolution models. We report the discovery of nine new r-I stars, four new r-II stars, one of which is the most metal-poor known, nine low-α stars with [α/Fe] ≤ 0.15 as well as one unusual star with [Zn/Fe] = +1.4 and [Sr/Fe] = +1.2 but with normal [Ba/Fe]. Finally, we combine our sample with literature data to provide the most extensive view of the early chemical enrichment of the Milky Way Galaxy. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT We present an overview of, and first science results from, the Magellanic Edges Survey (MagES), an ongoing spectroscopic survey mapping the kinematics of red clump and red giant branch stars in the highly substructured periphery of the Magellanic Clouds. In conjunction with Gaia astrometry, MagES yields a sample of ~7000 stars with individual 3D velocities that probes larger galactocentric radii than most previous studies. We outline our target selection, observation strategy, data reduction, and analysis procedures, and present results for two fields in the northern outskirts (>10° on-sky from the centre) of the Large Magellanic Cloud (LMC). One field, located in the vicinity of an arm-like overdensity, displays apparent signatures of perturbation away from an equilibrium disc model. This includes a large radial velocity dispersion in the LMC disc plane, and an asymmetric line-of-sight velocity distribution indicative of motions vertically out of the disc plane for some stars. The second field reveals 3D kinematics consistent with an equilibrium disc, and yields Vcirc = 87.7 ± 8.0 km s−1 at a radial distance of ~10.5 kpc from the LMC centre. This leads to an enclosed mass estimate for the LMC at this radius of (1.8 ± 0.3) × 1010 M⊙. 
    more » « less
  4. null (Ed.)
    ABSTRACT In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of $$-6.5 \le \rm [Fe/H] \le -2.05$$ dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of $$\rm [Fe/H]=-3.31\, \mathrm{ and }\, -3.74$$, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that ∼21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Zmax| ≤ 3 kpc. Of particular interest is a subsample (∼11 per cent of the total) of low |Zmax| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = –4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Zmax|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Zmax|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (∼4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted. 
    more » « less
  5. ABSTRACT We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R ≈ 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to −2.0, 41 per cent have [Fe/H] ≤ −2.75 and only approximately seven per cent have [Fe/H] > −2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < −4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < −4), the stars observed spectroscopically are dominated by a ‘carbon-normal’ population with [C/Fe]1D, LTE ≤ +1 dex. Consideration of the A(C)1D, LTE versus [Fe/H]1D, LTE diagram suggests that the current selection process is strongly biased against stars with A(C)1D, LTE > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)1D, LTE < 7.3 and [C/Fe]1D,LTE > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Δ(Log N)/Δ[Fe/H] = 1.5 ± 0.1 dex per dex for −4.0 ≤ [Fe/H] ≤ −2.75, but appears to drop abruptly at [Fe/H] ≈ −4.2, in line with previous studies. 
    more » « less
  6. ABSTRACT We report the discovery of SMSS J160540.18−144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure $$\left[\rm {Fe}/\rm {H}\right]= -6.2 \pm 0.2$$ (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, $$\left[\rm {C}/\rm {Fe}\right] = 3.9 \pm 0.2$$, while other abundances are compatible with an α-enhanced solar-like pattern with $$\left[\rm {Ca}/\rm {Fe}\right] = 0.4 \pm 0.2$$, $$\left[\rm {Mg}/\rm {Fe}\right] = 0.6 \pm 0.2$$, $$\left[\rm {Ti}/\rm {Fe}\right] = 0.8 \pm 0.2$$, and no significant s- or r-process enrichment, $$\left[\rm {Sr}/\rm {Fe}\right] \lt 0.2$$ and $$\left[\rm {Ba}/\rm {Fe}\right] \lt 1.0$$ (3σ limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about $$10\, \rm M_\odot$$ imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly $$20\, \rm M_\odot$$ are incompatible with the observed abundance pattern. 
    more » « less
  7. Abstract Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continentwide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another’s closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. 
    more » « less
  8. ABSTRACT We introduce the southern stellar stream spectroscopy survey (S5), an on-going program to map the kinematics and chemistry of stellar streams in the southern hemisphere. The initial focus of S5 has been spectroscopic observations of recently identified streams within the footprint of the dark energy survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of its accretion history. Observing with the 3.9 m Anglo-Australian Telescope’s 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from Gaia DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far S5 has mapped nine DES streams and three streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the S5 program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction, and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on S5, including future public data releases, can be found at http://s5collab.github.io. 
    more » « less